# Copyright (c) 2016 Weitian LI <liweitianux@live.com> # MIT license """ Grid utilities. """ import numpy as np from scipy import ndimage import healpy as hp from .draw import ellipse def _wrap_longitudes(lon): """Wrap the longitudes for values that beyond the valid range [0, 360)""" lon[lon < 0] += 360 lon[lon >= 360] -= 360 return lon def _wrap_latitudes(lat): """Wrap the latitudes for values that beyond the valid range [-90, 90]""" lat[lat < -90] = -lat[lat < -90] - 180 lat[lat > 90] = -lat[lat > 90] + 180 return lat def make_coordinate_grid(center, size, resolution): """Make a rectangle, Cartesian coordinate grid. Parameters ---------- center : 2-float tuple Center coordinate (longitude, latitude) of the grid, with longitude [0, 360) degree, latitude [-90, 90] degree. size : float, or 2-float tuple The sizes (size_lon, size_lat) of the grid along the longitude and latitude directions. If only one float specified, then the grid is square. resolution : float The grid resolution, unit [ degree ]. Returns ------- lon : 2D `~numpy.ndarray` The array with elements representing the longitudes of each grid pixel. The array is odd-sized, with the input center locating at the exact grid central pixel. Also, the longitudes are fixed to be in the valid range [0, 360). lat : 2D `~numpy.ndarray` The array with elements representing the latitudes of each grid pixel. Also, the latitudes are fixed to be in the valid range [-90, 90]. """ lon0, lat0 = center try: size_lon, size_lat = size except (TypeError, ValueError): size_lon = size_lat = size # Half number of pixels (excluding the center) hn_lon = np.ceil(0.5*size_lon / resolution).astype(np.int) hn_lat = np.ceil(0.5*size_lat / resolution).astype(np.int) idx_lon = lon0 + np.arange(-hn_lon, hn_lon+1) * resolution idx_lat = lat0 + np.arange(-hn_lat, hn_lat+1) * resolution # Fix the longitudes and latitudes to be in the valid ranges idx_lon = _wrap_longitudes(idx_lon) idx_lat = _wrap_latitudes(idx_lat) lon, lat = np.meshgrid(idx_lon, idx_lat) return lon, lat def make_grid_ellipse(center, size, resolution, rotation=None): """Make a square coordinate grid just containing the specified (rotated) ellipse. Parameters ---------- center : 2-float tuple Center coordinate (longitude, latitude) of the grid, with longitude [0, 360) degree, latitude [-90, 90] degree. size : 2-float tuple The (major, minor) axes of the filling ellipse, unit [ degree ]. resolution : float The grid resolution, unit [ degree ]. rotation : float, optional The rotation angle (unit [ degree ]) of the filling ellipse. Returns ------- lon : 2D `~numpy.ndarray` The array with elements representing the longitudes of each grid pixel. The array is odd-sized and square, with the input center locating at the exact grid central pixel. Also, the longitudes are fixed to be in the valid range [0, 360). lat : 2D `~numpy.ndarray` The array with elements representing the latitudes of each grid pixel. Also, the latitudes are fixed to be in the valid range [-90, 90]. gridmap : 2D float `~numpy.ndarray` The array containing the specified ellipse, where the pixels corresponding to the ellipse with positive values, while other pixels are zeros. This array is rotated from the nominal ellipse of value ones, therefore the edges of the rotated ellipse is in fraction (0-1), which can be regarded as similar to the sub-pixel rendering. NOTE ---- The generated grid is square, determined by the major axis of the ellipse, therefore, we can simply rotate the ellipse without reshaping. """ major = max(size) size_square = (major, major) lon, lat = make_coordinate_grid(center, size_square, resolution) shape = lon.shape # Fill the ellipse into the grid r0, c0 = np.floor(np.array(shape) / 2.0).astype(np.int) r_radius, c_radius = np.ceil(0.5*np.array(size)/resolution).astype(np.int) rr, cc = ellipse(r0, c0, r_radius, c_radius, shape=shape) gridmap = np.zeros(shape) gridmap[rr, cc] = 1.0 if rotation is not None: # Rotate the ellipse gridmap = ndimage.rotate(gridmap, angle=rotation, order=1, reshape=False) return (lon, lat, gridmap) def map_grid_to_healpix(grid, nside): """Map the filled coordinate grid to the HEALPix map (RING ordering). Parameters ---------- grid : 3-element tuple A 3-element tuple `(lon, lat, gridmap)` that specifies the coordinate grid to be mapped, where `lon` and `lat` are the longitudes and latitudes of the grid pixels, and `gridmap` is the image to be mapped to the HEALPix map. nside : int Nside of the output HEALPix map. Returns ------- indexes : 1D `~numpy.ndarray` The indexes of the effective HEALPix pixels that are mapped from the input coordinate grid. The indexes are in RING ordering. values : 1D `~numpy.ndarray` The values of each output HEALPix pixel with respect the above indexes. NOTE ---- Generally, the input coordinate grid has higher resolution than the output HEALPix map, so down-sampling is performed by averaging the pixels that map to the same HEALPix pixel. However, note that the total flux is *NOT PRESERVED* for the mapping (or reprojection) procedure. XXX/TODO: - Implement the flux-preserving algorithm (reference ???) """ lon, lat, gridmap = grid phi = np.radians(lon) theta = np.radians(90.0 - lat) ipix = hp.ang2pix(nside, theta, phi, nest=False) # Get the corresponding input grid pixels for each HEALPix pixel indexes, counts = np.unique(ipix, return_counts=True) shape = (len(indexes), max(counts)) datamap = np.zeros(shape) * np.nan # TODO: how to avoid this explicit loop ?? for i, idx in enumerate(indexes): pixels = gridmap[ipix == idx] datamap[i, :len(pixels)] = pixels values = np.nanmean(datamap, axis=1) return (indexes, values)