# Copyright (c) 2016-2017 Weitian LI <weitian@aaronly.me> # MIT license """ Grid utilities. """ import numpy as np import numba as nb from .draw import ellipse from .transform import rotate_center from .healpix import ang2pix_ring @nb.jit(nopython=True) def _wrap_longitudes(lon): """Wrap the longitudes for values that beyond the valid range [0, 360)""" lon[lon < 0] += 360 lon[lon >= 360] -= 360 return lon @nb.jit(nopython=True) def _wrap_latitudes(lat): """Wrap the latitudes for values that beyond the valid range [-90, 90]""" lat[lat < -90] = -lat[lat < -90] - 180 lat[lat > 90] = -lat[lat > 90] + 180 return lat @nb.jit(nb.types.UniTuple(nb.float64[:, :], 2)( nb.types.UniTuple(nb.float64, 2), nb.types.UniTuple(nb.float64, 2), nb.float64), nopython=True) def make_coordinate_grid(center, size, resolution): """ Make a rectangular, Cartesian coordinate grid. This is the ``numba.jit`` optimized version of ``make_coordinate_grid``. Parameters ---------- center : 2-float tuple Center coordinate (longitude, latitude) of the grid, with longitude [0, 360) degree, latitude [-90, 90] degree. size : float, or 2-float tuple The sizes (size_lon, size_lat) of the grid along the longitude and latitude directions. resolution : float The grid resolution, unit [ degree ]. Returns ------- lon : 2D `~numpy.ndarray` The array with elements representing the longitudes of each grid pixel. The array is odd-sized, with the input center locating at the exact grid central pixel. Also, the longitudes are fixed to be in the valid range [0, 360). lat : 2D `~numpy.ndarray` The array with elements representing the latitudes of each grid pixel. Also, the latitudes are fixed to be in the valid range [-90, 90]. """ lon0, lat0 = center size_lon, size_lat = size # Half number of pixels (excluding the center) hn_lon = int(np.ceil(0.5*size_lon / resolution)) hn_lat = int(np.ceil(0.5*size_lat / resolution)) idx_lon = lon0 + np.arange(-hn_lon, hn_lon+1) * resolution idx_lat = lat0 + np.arange(-hn_lat, hn_lat+1) * resolution # Fix the longitudes and latitudes to be in the valid ranges idx_lon = _wrap_longitudes(idx_lon) idx_lat = _wrap_latitudes(idx_lat) # XXX: ``numba`` currently does not support ``numpy.meshgrid`` shape = (len(idx_lat), len(idx_lon)) lon = np.zeros(shape) for i in range(shape[0]): lon[i, :] = idx_lon lat = np.zeros(shape) for i in range(shape[1]): lat[:, i] = idx_lat return (lon, lat) @nb.jit(nb.float64[:, :](nb.types.UniTuple(nb.int64, 2), nb.types.UniTuple(nb.int64, 2), nb.float64), nopython=True) def make_ellipse(center, radii, rotation): """ Make a square grid map containing the specified rotated ellipse. Parameters ---------- center : 2-int tuple The row and column indexes of the ellipse center. radii : 2-int tuple The (major, minor) axes of the filling ellipse, number of pixels. rotation : float The rotation angle (unit [ degree ]) of the filling ellipse. Returns ------- gridmap : 2D float `~numpy.ndarray` The array containing the specified ellipse, where the pixels corresponding to the ellipse with positive values, while other pixels are zeros. This array is rotated from the nominal ellipse of value ones, therefore the edges of the rotated ellipse is in fraction (0-1), which can be regarded as similar to the sub-pixel rendering. """ rmax = max(radii) shape = (rmax*2+1, rmax*2+1) rr, cc = ellipse(center, radii, shape=shape) gridmap = np.zeros(shape) # XXX: ``numba`` only support one advanced index for ri, ci in zip(rr, cc): gridmap[ri, ci] = 1.0 # Rotate the ellipse about the grid center gridmap = rotate_center(gridmap, angle=rotation, interp=True, reshape=False, fill_value=0.0) return gridmap @nb.jit(nb.types.UniTuple(nb.float64[:, :], 3)( nb.types.UniTuple(nb.float64, 2), nb.types.UniTuple(nb.float64, 2), nb.float64, nb.float64), nopython=True) def make_grid_ellipse(center, size, resolution, rotation=0.0): """ Make a square coordinate grid just containing the specified (rotated) ellipse. Parameters ---------- center : 2-float tuple Center coordinate (longitude, latitude) of the grid, with longitude [0, 360) degree, latitude [-90, 90] degree. size : 2-float tuple The (major, minor) axes of the filling ellipse, unit [ degree ]. resolution : float The grid resolution, unit [ degree ]. rotation : float The rotation angle (unit [ degree ]) of the filling ellipse. Returns ------- lon : 2D `~numpy.ndarray` The array with elements representing the longitudes of each grid pixel. The array is odd-sized and square, with the input center locating at the exact grid central pixel. Also, the longitudes are fixed to be in the valid range [0, 360). lat : 2D `~numpy.ndarray` The array with elements representing the latitudes of each grid pixel. Also, the latitudes are fixed to be in the valid range [-90, 90]. gridmap : 2D float `~numpy.ndarray` The array containing the specified ellipse, where the pixels corresponding to the ellipse with positive values, while other pixels are zeros. NOTE ---- The generated grid is square, determined by the major axis of the ellipse, therefore, we can simply rotate the ellipse without reshaping. """ size_major = max(size) size = (size_major, size_major) lon, lat = make_coordinate_grid(center, size, resolution) shape = lon.shape # Fill the ellipse into the grid r0, c0 = np.floor(np.array(shape) / 2.0).astype(np.int64) radii = np.ceil(0.5*np.array(size)/resolution).astype(np.int64) rr, cc = ellipse((r0, c0), (radii[0], radii[1]), shape=shape) gridmap = np.zeros(shape) # XXX: ``numba`` only support one advanced index for ri, ci in zip(rr, cc): gridmap[ri, ci] = 1.0 # Rotate the ellipse about the grid center gridmap = rotate_center(gridmap, angle=rotation, interp=True, reshape=False, fill_value=0.0) return (lon, lat, gridmap) @nb.jit(nb.types.Tuple((nb.int64[:], nb.float64[:]))( nb.types.UniTuple(nb.float64[:, :], 3), nb.int64), nopython=True) def map_grid_to_healpix(grid, nside): """ Map the filled coordinate grid to the HEALPix map (RING ordering). Parameters ---------- grid : 3-element tuple A 3-element tuple `(lon, lat, gridmap)` that specifies the coordinate grid to be mapped, where `lon` and `lat` are the longitudes and latitudes of the grid pixels, and `gridmap` is the image to be mapped to the HEALPix map. nside : int Nside of the output HEALPix map. Returns ------- indexes : 1D `~numpy.ndarray` The indexes of the effective HEALPix pixels that are mapped from the input coordinate grid. The indexes are in RING ordering. values : 1D `~numpy.ndarray` The values of each output HEALPix pixel with respect the above indexes. NOTE ---- Generally, the input coordinate grid has higher resolution than the output HEALPix map, so down-sampling is performed by averaging the pixels that map to the same HEALPix pixel. However, note that the total flux is *NOT PRESERVED* for the mapping (or reprojection) procedure. XXX/TODO: - Implement the flux-preserving algorithm (reference ???) """ # XXX: ``numba`` does not support using 2D array as indexes lon = grid[0].flatten() lat = grid[1].flatten() gridmap = grid[2].flatten() phi = np.radians(lon) theta = np.radians(90.0 - lat) ipix = ang2pix_ring(nside, theta, phi) # Get the corresponding input grid pixels for each HEALPix pixel # XXX: ``numba`` currently does not support ``numpy.unique()`` ipix_perm = ipix.argsort() ipix_sorted = ipix[ipix_perm] idx_uniq = np.concatenate((np.array([True]), ipix_sorted[1:] != ipix_sorted[:-1])) indexes = ipix_sorted[idx_uniq] values = np.zeros(indexes.shape) for i, idx in enumerate(indexes): # XXX: ``numba`` does not support using 2D array as indexes values[i] = np.mean(gridmap[ipix == idx]) return (indexes, values)