# Copyright (c) 2016 Weitian LI <liweitianux@live.com> # MIT license # # References: # [1] K. M. Gorski, et al. 2005, ApJ, 622, 759 # "HEALPix: A Framework for High-resolution Discretization and Fast # Analysis of Data Distributed on the Sphere" # http://healpix.sourceforge.net/ # [2] M. R. Calabretta & B. F. Roukema 2007, MNRAS, 381, 865 # "Mapping on the HEALPix Grid" # [3] M. R. Calabretta: WCSLIB: HPXcvt # http://www.atnf.csiro.au/people/mcalabre/WCS/ """ HEALPix utilities ----------------- healpix2hpx: reorganize the HEALPix data (1D array as FITS table) into 2D FITS image in HPX coordinate system hpx2healpix: revert the above reorganization and turn the 2D image in HPX format back into HEALPix data as 1D array. """ from datetime import datetime, timezone import logging import numpy as np import numba as nb import healpy as hp from astropy.io import fits from . import read_fits_healpix logger = logging.getLogger(__name__) def healpix2hpx(data, append_history=None, append_comment=None): """Reorganize the HEALPix data (1D array as FITS table) into 2D FITS image in HPX coordinate system. Parameters ---------- data : str or `~astropy.io.fits.BinTableHDU` The input HEALPix map to be converted to the HPX image, which can be either the filename of the HEALPix FITS file, or be a `~astropy.io.fits.BinTableHDU` instance containing the HEALPix data as well as its header. header : `~astropy.io.fits.Header`, optional Header of the HEALPix FITS file append_history : list[str] Append the provided history to the output FITS header append_comment : list[str] Append the provided comment to the output FITS header Returns ------- hpx_data : 2D `~numpy.ndarray` The reorganized HPX image hpx_header : `~astropy.io.fits.Header` FITS header for the HPX image """ hp_data, hp_header = read_fits_healpix(data) dtype = hp_data.dtype npix = len(hp_data) nside = hp.npix2nside(npix) logger.info("Loaded HEALPix data: dtype={0}, Npixel={1}, Nside={2}".format( dtype, npix, nside)) hp_data = np.append(hp_data, np.nan).astype(dtype) logger.info("Calculating the HPX indexes ...") hpx_idx = _calc_hpx_indexes(nside) # Fix indexes of "-1" to set empty pixels with above appended NaN hpx_idx[hpx_idx == -1] = len(hp_data) - 1 hpx_data = hp_data[hpx_idx] hpx_header = _make_hpx_header(hp_header, append_history=append_history, append_comment=append_comment) return (hpx_data.astype(hp_data.dtype), hpx_header) def hpx2healpix(data, append_history=None, append_comment=None): """Revert the reorganization and turn the 2D image in HPX format back into HEALPix data as 1D array. Parameters ---------- data : str or `~astropy.io.fits.PrimaryHDU` The input HPX image to be converted to the HEALPix data, which can be either the filename of the HPX FITS image, or be a `~astropy.io.fits.PrimaryHDU` instance containing the HPX image as well as its header. append_history : list[str] Append the provided history to the output FITS header append_comment : list[str] Append the provided comment to the output FITS header Returns ------- hp_data : 1D `~numpy.ndarray` HEALPix data reorganized from the input HPX image hp_header : `~astropy.io.fits.Header` FITS header for the HEALPix data """ if isinstance(data, str): hpx_hdu = fits.open(data)[0] hpx_data, hpx_header = hpx_hdu.data, hpx_hdu.header logger.info("Read HPX image from FITS file: %s" % data) else: hpx_data, hpx_header = data.data, data.header logger.info("Read HPX image from PrimaryHDU") logger.info("HPX image dtype: {0}".format(hpx_data.dtype)) logger.info("HPX coordinate system: ({0}, {1})".format( hpx_header["CTYPE1"], hpx_header["CTYPE2"])) if ((hpx_header["CTYPE1"], hpx_header["CTYPE2"]) != ("GLON-HPX", "GLAT-HPX")): raise ValueError("only Galactic 'HPX' projection currently supported") # Calculate Nside nside = round(hpx_header["NAXIS1"] / 5) nside2 = round(90 / np.sqrt(2) / hpx_header["CDELT2"]) if nside != nside2: raise ValueError("Cannot determine the Nside value") logger.info("Determined HEALPix Nside=%d" % nside) # npix = hp.nside2npix(nside) logger.info("Calculating the HPX indexes ...") hpx_idx = _calc_hpx_indexes(nside).flatten() hpx_idx_uniq, idxx = np.unique(hpx_idx, return_index=True) if np.sum(hpx_idx_uniq >= 0) != npix: raise ValueError("Number of pixels does not match indexes") hpx_data = hpx_data.flatten() hp_data = hpx_data[idxx[hpx_idx_uniq >= 0]] hp_header = _make_healpix_header(hpx_header, nside=nside, append_history=append_history, append_comment=append_comment) return (hp_data.astype(hpx_data.dtype), hp_header) @nb.jit(nb.int64[:](nb.int64, nb.int64, nb.int64), nopython=True) def _calc_hpx_row_idx(nside, facet, jmap): """Calculate the HEALPix indexes for one row of a facet. NOTE ---- * Only RING ordering is currently supported. * This function calculates the double-pixelization index then converts it to the regular RING index. References: ref.[2], Sec.3.1 """ I0 = [1, 3, -3, -1, 0, 2, 4, -2, 1, 3, -3, -1] J0 = [1, 1, 1, 1, 0, 0, 0, 0, -1, -1, -1, -1] # n2side = 2 * nside n8side = 8 * nside nside1 = nside - 1 # double-pixelization index of the last pixel in the north polar cap npole = (n2side - 1) ** 2 - 1 # double-pixelization pixel coordinates of the center of the facet i0 = nside * I0[facet] j0 = nside * J0[facet] # row_idx = np.zeros(nside, dtype=np.int64) for imap in range(nside): # (i, j) are 0-based, double-pixelization pixel coordinates. # The origin is at the intersection of the equator and prime # meridian, `i` increases to the east (N.B.) and `j` to the north. i = i0 + nside1 - (jmap + imap) j = j0 + jmap - imap # convert `i` for counting pixels if i < 0: i += n8side i += 1 # if j > nside: # north polar regime if j == n2side: idx2 = 0 else: # number of pixels in a polar facet with this value of `j` npj = 2 * (n2side - j) # index of the last pixel in the row above this idx2 = (npj - 1) ** 2 - 1 # number of pixels in this row in the polar facets before this idx2 += npj * (i // n2side) # pixel number in this polar facet idx2 += i % n2side - (j - nside) - 1 elif j >= -nside: # equatorial regime idx2 = npole + n8side * (nside - j) + i else: # south polar regime idx2 = 24 * nside**2 + 1 if j > -n2side: # number of pixels in a polar facet with this value of `j` npj = 2 * (n2side + j) # total number of pixels in this row or below it idx2 -= (npj + 1) ** 2 # number of pixels in this row in the polar facets before this idx2 += npj * (i // n2side) # pixel number in this polar facet idx2 += i % n2side + (j + nside) - 1 # convert double-pixelization index to regular RING index idx = (idx2 - 1) // 2 row_idx[imap] = idx return row_idx @nb.jit(nb.int64[:, :](nb.int64), nopython=True) def _calc_hpx_indexes(nside): """Calculate HEALPix element indexes for the HPX projection scheme. Parameters ---------- nside : int Nside of the input/output HEALPix data Returns ------- indexes : 2D `~numpy.ndarray` 2D integer array of same size as the input/output HPX FITS image, with elements tracking the indexes of the HPX pixels in the HEALPix 1D array, while elements with value "-1" indicating null/empty HPX pixels. NOTE ---- * The indexes are 0-based; * Currently only HEALPix RING ordering supported; * The null/empty elements in the HPX projection are filled with "-1". """ # number of horizontal/vertical facet nfacet = 5 # Facets layout of the HPX projection scheme. # Note that this appears to be upside-down, and the blank facets # are marked with "-1". # Ref: ref.[2], Fig.4 # # XXX: # Cannot use the nested list here, which fails with ``numba`` error: # ``NotImplementedError: unsupported nested memory-managed object`` FACETS_LAYOUT = np.zeros((nfacet, nfacet), dtype=np.int64) FACETS_LAYOUT[0, :] = [6, 9, -1, -1, -1] FACETS_LAYOUT[1, :] = [1, 5, 8, -1, -1] FACETS_LAYOUT[2, :] = [-1, 0, 4, 11, -1] FACETS_LAYOUT[3, :] = [-1, -1, 3, 7, 10] FACETS_LAYOUT[4, :] = [-1, -1, -1, 2, 6] # shape = (nfacet*nside, nfacet*nside) indexes = -np.ones(shape, dtype=np.int64) # # Loop vertically facet-by-facet for jfacet in range(nfacet): # Loop row-by-row for j in range(nside): row = jfacet * nside + j # Loop horizontally facet-by-facet for ifacet in range(nfacet): facet = FACETS_LAYOUT[jfacet, ifacet] if facet < 0: # blank facet pass else: idx = _calc_hpx_row_idx(nside, facet, j) col = ifacet * nside indexes[row, col:(col+nside)] = idx # return indexes def _make_hpx_header(header, append_history=None, append_comment=None): """Make the FITS header for the HPX image.""" header = header.copy(strip=True) nside = header["NSIDE"] # set pixel transformation parameters crpix1 = (5 * nside + 1) / 2.0 crpix2 = crpix1 header["CRPIX1"] = (crpix1, "Coordinate reference pixel") header["CRPIX2"] = (crpix2, "Coordinate reference pixel") cos45 = np.cos(np.deg2rad(45)) header["PC1_1"] = (cos45, "Transformation matrix element") header["PC1_2"] = (cos45, "Transformation matrix element") header["PC2_1"] = (-cos45, "Transformation matrix element") header["PC2_2"] = (cos45, "Transformation matrix element") cdelt1 = -90.0 / nside / np.sqrt(2) cdelt2 = -cdelt1 header["CDELT1"] = (cdelt1, "[deg] Coordinate increment") header["CDELT2"] = (cdelt2, "[deg] Coordinate increment") # set celestial transformation parameters header["CTYPE1"] = ("GLON-HPX", "Galactic longitude in an HPX projection") header["CTYPE2"] = ("GLAT-HPX", "Galactic latitude in an HPX projection") header["CRVAL1"] = (0.0, "[deg] Galactic longitude at the reference point") header["CRVAL2"] = (0.0, "[deg] Galactic latitude at the reference point") header["PV2_1"] = (4, "HPX H parameter (longitude)") header["PV2_2"] = (3, "HPX K parameter (latitude)") logger.info("Made HPX FITS header") # header["DATE"] = (datetime.now(timezone.utc).astimezone().isoformat(), "File creation date") comments = [ 'The HPX coordinate system is an reorganization of the HEALPix', 'data without regridding or interpolation, which is described in', '"Mapping on the HEALPix Grid" by M. Calabretta and B. Roukema', '(2007, MNRAS, 381, 865-872)', 'See also http://www.atnf.csiro.au/people/Mark.Calabretta/' ] for comment in comments: header.add_comment(comment) # if append_history is not None: logger.info("HPX FITS header: append history") for history in append_history: header.add_history(history) if append_comment is not None: logger.info("HPX FITS header: append comments") for comment in append_comment: header.add_comment(comment) return header def _make_healpix_header(header, nside, append_history=None, append_comment=None): """Make the FITS header for the HEALPix data.""" header = header.copy(strip=True) # set HEALPix parameters header["PIXTYPE"] = ("HEALPIX", "HEALPix pixelization") header["ORDERING"] = ("RING", "Pixel ordering scheme, either RING or NESTED") header["NSIDE"] = (nside, "HEALPix resolution parameter") npix = hp.nside2npix(nside) header["NPIX"] = (npix, "Total number of pixels") header["FIRSTPIX"] = (0, "First pixel # (0 based)") header["LASTPIX"] = (npix-1, "Last pixel # (0 based)") logger.info("Made HEALPix FITS header") # header["DATE"] = (datetime.now(timezone.utc).astimezone().isoformat(), "File creation date") # if append_history is not None: logger.info("HEALPix FITS header: append history") for history in append_history: header.add_history(history) if append_comment is not None: logger.info("HEALPix FITS header: append comments") for comment in append_comment: header.add_comment(comment) return header @nb.jit(nb.int64(nb.int64), nopython=True) def nside2npix(nside): """Calculate the number of pixels for the given Nside resolution. NOTE ---- This is the JIT-optimized version that replaces the ``healpy.nside2npix`` """ return 12 * nside * nside @nb.jit(nb.int64(nb.int64, nb.float64, nb.float64), nopython=True) def ang2pix_ring_single(nside, theta, phi): """Calculate the pixel indexes in RING ordering scheme for one single pair of angular coordinate on the sphere. Parameters ---------- theta : float The polar angle (i.e., latitude), θ ∈ [0, π]. (unit: rad) phi : float The azimuthal angle (i.e., longitude), φ ∈ [0, 2π). (unit: rad) Returns ------- ipix : int The index of the pixel corresponding to the input coordinate. NOTE ---- * Only support the *RING* ordering scheme * This is the JIT-optimized version that partially replaces the ``healpy.ang2pix`` References ---------- - HEALPix software: ``src/C/subs/chealpix.c``: ``ang2pix_ring_z_phi()`` http://healpix.sourceforge.net/ """ z = np.cos(theta) # colatitude za = np.absolute(z) tt = (2.0 / np.pi) * np.remainder(phi, 2*np.pi) # range: [0, 4) if za <= 2.0/3.0: # Equatorial region temp1 = nside * (tt + 0.5) temp2 = nside * z * 0.75 jp = int(temp1 - temp2) # Index of ascending edge line jm = int(temp1 + temp2) # Index of descending edge line # Ring number counted from z=2/3 iring = nside + 1 + jp - jm # range: [1, 2n+1] kshift = 1 - (iring & 1) # kshift=1 if ir even, 0 otherwise ip = int((jp + jm - nside + kshift + 1) / 2) ip = np.remainder(ip, 4*nside) ipix = nside * (nside-1) * 2 + (iring-1) * 4 * nside + ip else: # North & South polar caps tp = tt - int(tt) tmp = nside * np.sqrt(3 * (1-za)) jp = int(tp * tmp) jm = int((1.0-tp) * tmp) # Ring number counted from the closest pole iring = jp + jm + 1 ip = int(tt * iring) ip = np.remainder(ip, 4*iring) # if z > 0: ipix = 2 * iring * (iring-1) + ip else: ipix = 12 * nside * nside - 2 * iring * (iring+1) + ip # return ipix @nb.jit(nb.types.UniTuple(nb.float64, 2)(nb.int64, nb.int64), nopython=True) def pix2ang_ring_single(nside, ipix): """Calculate the angular coordinate on the sphere for one pixel index in the RING ordering scheme. Parameters ---------- ipix : int The index of the HEALPix pixel in RING ordering. Returns ------- theta : float The polar angle (i.e., latitude), θ ∈ [0, π]. (unit: rad) phi : float The azimuthal angle (i.e., longitude), φ ∈ [0, 2π). (unit: rad) NOTE ---- * Only support the *RING* ordering scheme * This is the JIT-optimized version that partially replaces the ``healpy.ang2pix`` References ---------- - HEALPix software: ``src/C/subs/chealpix.c``: ``pix2ang_ring_z_phi()`` http://healpix.sourceforge.net/ """ ncap = nside * (nside-1) * 2 npix = nside2npix(nside) fact2 = 4.0 / npix if ipix < ncap: # North polar cap tmp = int(np.sqrt(2*ipix + 1 + 0.5)) # Ring number counted from the North pole iring = int((tmp + 1) / 2) iphi = (ipix + 1) - 2 * iring * (iring-1) z = 1.0 - iring * iring * fact2 phi = (iphi - 0.5) * np.pi / (2 * iring) elif ipix < (npix - ncap): # Equatorial region fact1 = 2 * nside * fact2 ip = ipix - ncap # Ring number counted from the North pole iring = int(ip / (4*nside) + nside) iphi = ip % (4*nside) + 1 if (iring + nside) % 2 == 1: fodd = 1.0 # (iring+nside) is odd else: fodd = 0.5 z = (2*nside - iring) * fact1 phi = (iphi - fodd) * np.pi / (2 * nside) else: # South polar cap ip = npix - ipix tmp = int(np.sqrt(2*ip - 1 + 0.5)) # Ring number counted from the South pole iring = int((tmp + 1) / 2) iphi = 4 * iring + 1 - (ip - 2 * iring * (iring-1)) z = iring * iring * fact2 - 1.0 phi = (iphi - 0.5) * np.pi / (2 * iring) # theta = np.arccos(z) return (theta, phi) @nb.jit([nb.int64[:](nb.int64, nb.float64[:], nb.float64[:]), nb.int64[:, :](nb.int64, nb.float64[:, :], nb.float64[:, :])], nopython=True) def ang2pix_ring(nside, theta, phi): """Calculate the pixel indexes in RING ordering scheme for each pair of angular coordinates on the sphere. Parameters ---------- theta : 1D or 2D `~numpy.ndarray` The polar angles (i.e., latitudes), θ ∈ [0, π]. (unit: rad) phi : 1D or 2D `~numpy.ndarray` The azimuthal angles (i.e., longitudes), φ ∈ [0, 2π). (unit: rad) Returns ------- ipix : 1D or 1D `~numpy.ndarray` The indexes of the pixels corresponding to the input coordinates. The shape is the same as the input array. NOTE ---- * Only support the *RING* ordering scheme * This is the JIT-optimized version that partially replaces the ``healpy.ang2pix`` """ shape = theta.shape size = theta.size theta = theta.flatten() phi = phi.flatten() ipix = np.zeros(size, dtype=np.int64) for i in range(size): ipix[i] = ang2pix_ring_single(nside, theta[i], phi[i]) return ipix.reshape(shape) @nb.jit([nb.types.UniTuple(nb.float64[:], 2)(nb.int64, nb.int64[:]), nb.types.UniTuple(nb.float64[:, :], 2)(nb.int64, nb.int64[:, :])], nopython=True) def pix2ang_ring(nside, ipix): """Calculate the angular coordinates on the sphere for each pixel index in the RING ordering scheme. Parameters ---------- ipix : 1D or 2D `~numpy.ndarray` The indexes of the HEALPix pixels in the RING ordering Returns ------- theta : 1D or 2D `~numpy.ndarray` The polar angles (i.e., latitudes), θ ∈ [0, π]. (unit: rad) phi : 1D or 2D `~numpy.ndarray` The azimuthal angles (i.e., longitudes), φ ∈ [0, 2π). (unit: rad) The shape is the same as the input array. NOTE ---- * Only support the *RING* ordering scheme * This is the JIT-optimized version that partially replaces the ``healpy.pix2ang`` """ shape = ipix.shape size = ipix.size ipix = ipix.flatten() theta = np.zeros(size, dtype=np.float64) phi = np.zeros(size, dtype=np.float64) for i in range(size): theta_, phi_ = pix2ang_ring_single(nside, ipix[i]) theta[i] = theta_ phi[i] = phi_ return (theta.reshape(shape), phi.reshape(shape))