# Copyright (c) 2016-2017 Weitian LI <weitian@aaronly.me> # MIT license """ Random number and/or points generations. """ import numpy as np def spherical_uniform(n=1): """ Uniformly pick random points on the surface of an unit sphere. The algorithm is described in [SpherePointPicking]_. Parameters ---------- n : int Number of points to be randomly picked Returns ------- theta : float, or 1D `~numpy.ndarray` The polar angles, θ ∈ [0, π]. If ``n > 1``, then returns a 1D array containing all the generated coordinates. Unit: [rad] phi : float, or 1D `~numpy.ndarray` The azimuthal angles, φ ∈ [0, 2π). Unit: [rad] NOTE ---- Physicists usually adopt the (radial, polar, azimuthal) order with the (r, θ, φ) notation for the spherical coordinates convention, which is adopted here and by ``healpy``. However, this convention is *different* to the convention generally used by mathematicians. The following relation can be used to convert the generated (theta, phi) to the Galactic/equatorial longitude and latitude convention: lon = np.rad2deg(phi) lat = 90.0 - np.rad2deg(theta) References ---------- .. [SpherePointPicking] Wolfram MathWorld - Sphere Point Picking http://mathworld.wolfram.com/SpherePointPicking.html .. [SphericalCoordinates] Wolfram MathWorld - Spherical Coordinates http://mathworld.wolfram.com/SphericalCoordinates.html """ u = np.random.uniform(size=n) v = np.random.uniform(size=n) phi = 2*np.pi * u theta = np.arccos(2*v - 1) return (theta, phi)