# Copyright (c) 2016 Weitian LI <liweitianux@live.com> # MIT license """ FITS WCS (world coordinate system) reprojection utilities. zea2healpix: Reproject the maps in ZEA (zenithal/azimuthal equal area) projection to Galactic frame and organize in HEALPix format. """ import logging import numpy as np from scipy.ndimage import map_coordinates import astropy.units as au from astropy.coordinates import Galactic, UnitSphericalRepresentation from astropy.wcs import WCS from astropy.wcs.utils import wcs_to_celestial_frame from astropy.io import fits import healpy as hp from .healpix import _make_healpix_header logger = logging.getLogger(__name__) def _convert_wcs(lon_in, lat_in, frame_in, frame_out): """Convert (longitude, latitude) coordinates from the input frame to the specified output frame. Parameters ---------- lon_in : 1D `~numpy.ndarray` The longitude to convert, unit degree, [0, 360) lat_in : 1D `~numpy.ndarray` The latitude to convert, unit degree, [-90, 90] frame_in, frame_out : tuple or `~astropy.wcs.WCS` The input and output frames, which can be passed either as a tuple of ``(frame, lon_unit, lat_unit)`` or as a `~astropy.wcs.WCS` instance. Returns ------- lon_out, lat_out : 1D `~numpy.ndarray` Output longitude and latitude in the output frame References ---------- [1] reproject - wcs_utils.convert_world_coordinates() https://github.com/astrofrog/reproject """ if isinstance(frame_in, WCS): coordframe_in = wcs_to_celestial_frame(frame_in) lon_in_unit = au.Unit(frame_in.wcs.cunit[0]) lat_in_unit = au.Unit(frame_in.wcs.cunit[1]) else: coordframe_in, lon_in_unit, lat_in_unit = frame_in # if isinstance(frame_out, WCS): coordframe_out = wcs_to_celestial_frame(frame_out) lon_out_unit = au.Unit(frame_out.wcs.cunit[0]) lat_out_unit = au.Unit(frame_out.wcs.cunit[1]) else: coordframe_out, lon_out_unit, lat_out_unit = frame_out # logger.info("Convert coordinates from {0} to {1}".format(coordframe_in, coordframe_out)) logger.info("Input coordinates units: " "{0} (longitude), {1} (latitude)".format(lon_in_unit, lat_in_unit)) logger.info("Output coordinates units: " "{0} (longitude), {1} (latitude)".format(lon_out_unit, lat_out_unit)) # data = UnitSphericalRepresentation(lon_in*lon_in_unit, lat_in*lat_in_unit) coords_in = coordframe_in.realize_frame(data) coords_out = coords_in.transform_to(coordframe_out) data_out = coords_out.represent_as("unitspherical") lon_out = data_out.lon.to(lon_out_unit).value lat_out = data_out.lat.to(lon_out_unit).value return lon_out, lat_out def _image_to_healpix(image, wcs, nside, order=1, hemisphere=None): """Convert image in a normal WCS projection to HEALPix data of *RING* ordering and *Galactic* coordinate system. Parameters ---------- image : 2D `~numpy.ndarray` Input image array to be reprojected into HEALPix format. wcs : `~astropy.wcs.WCS` The WCS of the input image. order : int, optional The order of the spline interpolation, valid range: 0-5 hemisphere : str, optional Specify the hemisphere on which the pixels to be reprojected. Valid values: `"N"/"NORTH"/"NORTHERN"` (northern), `"S"/"SOUTH"/"SOUTHERN"` (southern), or `None`. If None, then no pixel filtering applied. Note: northern hemisphere includes the equator, while southern not. Returns ------- hpdata : 1D `~numpy.ndarray` Projected HEALPix data array (1D) of length 12*nside*nside. The invalid pixels are filled with value NaN (`np.nan`). NOTE ---- Since the HEALPix map is full-sky, however, the input image may contains only part of the full sky (e.g., one of the ZEA-projected image contains only either northern or southern Galactic hemisphere), so the argument `hemisphere` should be specified if applicable. Otherwise, the WCS (of input image) can NOT correctly convert the requested sky coordinates to the pixels in the input image. If the requested coordinates beyond the available scope of the input image, then the converted pixel positions may be negative or even WRONG. References ---------- [1] reproject - healpix.core.image_to_healpix() https://github.com/astrofrog/reproject """ if (hemisphere is not None) and ( hemisphere.upper() not in ["N", "NORTH", "NORTHERN", "S", "SOUTH", "SOUTHERN"]): raise ValueError("invalid hemisphere: {0}".format(hemisphere)) # npix = hp.nside2npix(nside) hpidx = np.arange(npix).astype(np.int) logger.info("Output HEALPix: Nside={0}, Npixel={1}".format(nside, npix)) # Calculate the longitude and latitude in frame of output HEALPix logger.info("Calculate the longitudes and latitudes on the HEALPix grid") theta, phi = hp.pix2ang(nside, hpidx, nest=False) lon_hp = np.degrees(phi) lat_hp = 90.0 - np.degrees(theta) # Convert between the celestial coordinate systems coordsys_hp = Galactic() logger.info("Output HEALPix uses frame: {0}".format(coordsys_hp)) frame_hp = (coordsys_hp, au.deg, au.deg) lon_in, lat_in = _convert_wcs(lon_hp, lat_hp, frame_hp, wcs) # Filter the pixels on the specified hemisphere if hemisphere is None: mask = np.ones(lat_in.shape).astype(np.bool) logger.info("NO hemisphere constraint specified") elif hemisphere.upper() in ["N", "NORTH", "NORTHERN"]: # northern hemisphere (include the equator) mask = lat_in >= 0.0 logger.info("Only process the NORTHERN hemisphere (include EQUATOR") else: # southern hemisphere mask = lat_in < 0.0 logger.info("Only process the SOUTHERN hemisphere (EXCLUDE equator") lon_in = lon_in[mask] lat_in = lat_in[mask] # Look up pixels in the input coordinate system # XXX/NOTE: note the order of returns: (Y, X) yi, xi = wcs.wcs_world2pix(lon_in, lat_in, 0) # Interpolate to obtain the HEALPix data from the input image logger.info("Calculate the HEALPix data by interpolating on input image") logger.info("Interpolation order: {0}".format(order)) data = map_coordinates(image, [xi, yi], order=order, mode="constant", cval=np.nan) # Make the HEALPix array with above hemisphere mask considered hpdata = np.zeros(shape=npix, dtype=data.dtype) hpdata[mask] = data hpdata[~mask] = np.nan return hpdata def _inpaint_healpix(data, ipix): """Inpaint the missing pixels in the HEALPix map. The missing pixels are filled with the averages of corresponding 8 neighboring pixels. The other missing pixels within the 8 neighboring pixels are also excluded when calculating the averages. Parameters ---------- data : 1D `~numpy.ndarray` HEALPix data array in *RING* ordering ipix : 1D `~numpy.ndarray` Array specifying the missing pixels in the HEALPix map. This can be either an integer array of missing pixel indices in *RING* ordering, or be an boolean array of same length with `True` indicating the missing pixels. Returns ------- inpainted : 1D `~numpy.ndarray` Inpainted HEALPix data array """ logger.info("Inpaint the HEALPix map for missing pixels ...") if (ipix.dtype == np.bool) and (ipix.shape == data.shape): ipix = np.where(ipix)[0] nside = hp.npix2nside(data.size) inpainted = data.copy() inpainted[ipix] = np.nan logger.info("Get the 8 neighbors for each HEALPix missing pixel") ipix_neighbors = hp.get_all_neighbours(nside, ipix) neighbors = inpainted[ipix_neighbors] # Warn the pixels with >4 NaN's within their 8 neighbors neighbors_nan = np.sum(np.isnan(neighbors), axis=0) ipix_warning = ipix[neighbors_nan > 4] if len(ipix_warning) > 0: logger.warning("These pixels whose 8 neighbors have >4 NaN's: " "%s" % (", ".join(np.char.mod("%d", ipix_warning)))) # logger.info("Calculate the averages of neighbors (exclude NaN's)") averages = np.nanmean(neighbors, axis=0) inpainted[ipix] = averages logger.info("Done inpaint %d missing pixels" % len(ipix)) return inpainted def zea2healpix(img1, img2, nside, order=1, inpaint=False, append_history=None, append_comment=None): """Reproject the maps in ZEA (zenithal/azimuthal equal area) projection to Galactic frame and organize in HEALPix format. Parameters ---------- img1, img2 : str or `~astropy.io.fits.PrimaryHDU` Two input ZEA-projected FITS files nside : int Nside for the output HEALPix data order : int, optional Interpolation order, valid range: 0-5 inpaint : bool, optional Whether to inpaint the missing pixels append_history : list[str], optional Append the provided history to the output FITS header append_comment : list[str], optional Append the provided comment to the output FITS header Returns ------- hp_data : 1D `~numpy.ndarray` Reprojected HEALPix data; The missing pixels have value NaN if `inpaint=False`. hp_header : `~astropy.io.fits.Header` FITS header for the reprojected HEALPix data hp_mask : 1D `~numpy.ndarray` Array of same shape as the above `hp_data` indicating the status of each pixel of the output array. Values of "0" indicate the missing pixels (i.e., there is no transformation to the input images); values of "1" indicate the output pixel maps to one and only one of the input images; values of "2" indicate the duplicate/overlapping pixels that map to both of the two input images. NOTE ---- - One ZEA-projected FITS file only contains either the northern Galactic hemisphere (LAM_NSGP=1), or southern Galactic hemisphere (LAM_NSGP=-1). Thus two ZEA-projected FITS files should both be provided to get the full-sky map. - The two reprojected HEALPix data are simply added to compose the full-sky HEALPix map. Duplicate/overlapping pixels are warned. - The combined full-sky HEALPix map may still have some missing pixels, which is also warned. If `inpaint=True`, then these missing pixels are filled with the averages of their 8 neighboring pixels (exclude NaN's). """ if isinstance(img1, str): img1 = fits.open(img1)[0] if isinstance(img2, str): img2 = fits.open(img2)[0] zea_img1, zea_hdr1 = img1.data, img1.header zea_img2, zea_hdr2 = img2.data, img2.header ZEA_NSGP = {1: "Northern", -1: "Southern"} zea_hemisphere1 = ZEA_NSGP.get(zea_hdr1["LAM_NSGP"]) zea_hemisphere2 = ZEA_NSGP.get(zea_hdr2["LAM_NSGP"]) logger.info("Read ZEA image1: {0}, shape {1}".format( zea_hemisphere1, zea_img1.shape)) logger.info("Read ZEA image2: {0}, shape {1}".format( zea_hemisphere2, zea_img2.shape)) zea_wcs1 = WCS(zea_hdr1) zea_wcs2 = WCS(zea_hdr2) logger.info("Reproject ZEA images to HEALPix ...") hp_data1 = _image_to_healpix(zea_img1, zea_wcs1, nside=nside, order=order, hemisphere=zea_hemisphere1.upper()) hp_data2 = _image_to_healpix(zea_img2, zea_wcs2, nside=nside, order=order, hemisphere=zea_hemisphere2.upper()) # Merge the two HEALPix data hp_nan1 = np.isnan(hp_data1) hp_nan2 = np.isnan(hp_data2) hp_mask = (~hp_nan1).astype(np.int) + (~hp_nan2).astype(np.int) hp_data1[hp_nan1] = 0.0 hp_data2[hp_nan2] = 0.0 hp_data = hp_data1 + hp_data2 logger.info("Done reprojection and merge two hemispheres") # Duplicate pixels and missing pixels pix_dup = (hp_mask == 2) if pix_dup.sum() > 0: logger.warning("Reprojected HEALPix data has %d duplicate pixel(s)" % pix_dup.sum()) hp_data[pix_dup] /= 2.0 logger.info("Averaged the duplicate pixel(s)") pix_missing = (hp_mask == 0) if pix_missing.sum() > 0: # Reset the missing pixels to NaN's hp_data[pix_missing] = np.nan logger.warning("Reprojected HEALPix data has %d missing pixel(s)" % pix_missing.sum()) if inpaint: hp_data = _inpaint_healpix(hp_data, pix_missing) # HEALPix FITS header header = zea_hdr1.copy(strip=True) keys = ["CTYPE1", "CTYPE2", "CRPIX1", "CRPIX2", "CRVAL1", "CRVAL2", "CD1_1", "CD1_2", "CD2_1", "CD2_2", "LONPOLE", "LAM_NSGP", "LAM_SCAL"] for k in keys: if k in header: del header[k] hp_header = _make_healpix_header(header, nside=nside, append_history=append_history, append_comment=append_comment) logger.info("Made HEALPix FITS header") return (hp_data, hp_header, hp_mask)