# Copyright (c) 2017 Weitian LI <weitian@aaronly.me> # MIT license """ WGS84 Earth geodetic coordinate conversion utilities. NOTE ---- The WGS84 coordinates (φ, λ, h) are *ellipsoidal*, not spheroidal (geocentric). References ---------- [1] Converting GPS Coordinates (φλh) to Navigation Coordinates (ENU) http://digext6.defence.gov.au/dspace/bitstream/1947/3538/1/DSTO-TN-0432.pdf [2] Convert WGS-84 geodetic locations to Cartesian coordinates in a local tangent plane https://gist.github.com/govert/1b373696c9a27ff4c72a """ import numpy as np class Earth: # WGS84 Earth semi-major & semi-minor axis [m] a = 6378137.0 b = 6356752.3142 # Ellipsoid flatness f = (a-b) / a # Eccentricity e2 = 1.0 - (b/a)**2 e = e2 ** 0.5 def geodetic2ecef(p): """ Convert the WGS84 geodetic coordinate to the ECEF (Earth Centered Earth Fixed) Cartesian coordinate. Parameters ---------- p : (lon, lat, h)-tuple The WGS84 geodetic point to be converted to ENU coordinate, units: lon, lat -> [deg]; h -> [m] Returns ------- ecef : (x, y, z)-tuple The converted ECEF coordinate. unit: [m] """ lon, lat, h = p phi, lam = np.deg2rad([lon, lat]) sin_phi, sin_lam = np.sin([phi, lam]) cos_phi, cos_lam = np.cos([phi, lam]) chi = np.sqrt(1.0 - Earth.e2 * sin_lam * sin_lam) v = Earth.a / chi x = (v + h) * cos_lam * cos_phi y = (v + h) * cos_lam * sin_phi z = (v*(1-Earth.e2) + h) * sin_lam return (x, y, z) def geodetic2enu(p, ref): """ Convert the WGS84 geodetic coordinate (longitude, latitude, height) to East-North-Up coordinates in a local tangent plane that is centered at the reference WGS84 geodetic point. Parameters ---------- p : (lon, lat, h)-tuple The WGS84 geodetic point to be converted to ENU coordinate, units: lon, lat -> [deg]; h -> [m] ref : (lon0, lat0, h0)-tuple The reference WGS84 geodetic point to determine the local tangent plane. Returns ------- enu : (east, north, up)-tuple The converted ENU coordinate in the determined local tangent plane. unit: [m] """ pxyz = np.array(geodetic2ecef(p)) pxyz0 = np.array(geodetic2ecef(ref)) dxyz = pxyz - pxyz0 lon0, lat0, h0 = ref phi0, lam0 = np.deg2rad([lon0, lat0]) sin_phi0, sin_lam0 = np.sin([phi0, lam0]) cos_phi0, cos_lam0 = np.cos([phi0, lam0]) # Rotation M = np.array([[-sin_phi0, cos_phi0, 0.0], [-cos_phi0*sin_lam0, -sin_phi0*sin_lam0, cos_lam0], [cos_phi0*cos_lam0, sin_phi0*cos_lam0, sin_lam0]]) east, north, up = M.dot(dxyz) return (east, north, up)