1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
|
# Configurations for "fg21sim"
# -*- mode: conf -*-
#
# Syntax: `ConfigObj`, https://github.com/DiffSK/configobj
#
# This file contains the options corresponding the extragalactic emission
# components, which currently includes the following components:
# - clusters: halos
# - pointsources
[extragalactic]
# Press-Schechter formalism to determine the dark matter halos
# distribution with respect to masses and redshifts, from which
# to further determine the total number of halos within a sky
# patch and to sample the masses and redshifts for each halo.
# NOTE: only consider the *dark matter* mass within the halo!
[[psformalism]]
# The model of the fitting function for halo mass distribution
# For all models and more details:
# https://hmf.readthedocs.io/en/latest/_autosummary/hmf.fitting_functions.html
model = option("jenkins", "ps", "smt", default="smt")
# The minimum (inclusive) and maximum (exclusive) halo mass (dark
# matter only) within which to calculate the halo mass distribution.
# Unit: [Msun]
M_min = float(default=1e13, min=1e10, max=1e14)
M_max = float(default=1e16, min=1e14, max=1e18)
# The logarithmic (base 10) step size for the halo masses; therefore
# the number of intervals is: (log10(M_max) - log10(M_min)) / M_step
M_step = float(default=0.01, min=0.001, max=0.1)
# The minimum and maximum redshift within which to calculate the
# halo mass distribution; as well as the step size.
z_min = float(default=0.01, min=0.001, max=1.0)
z_max = float(default=4.0, min=1.0, max=100)
z_step = float(default=0.01, min=0.001, max=1.0)
# Output file (NumPy ".npz" format) to save the calculated halo mass
# distributions at every redshift.
#
# This file packs the following 3 NumPy arrays:
# * ``dndlnm``:
# Shape: (len(z), len(mass))
# Differential mass function in terms of natural log of M.
# Unit: [Mpc^-3] (the little "h" is folded into the values)
# * ``z``:
# Redshifts where the halo mass distribution is calculated.
# * ``mass``:
# (Logarithmic-distributed) masses points.
# Unit: [Msun] (the little "h" is folded into the values)
dndlnm_outfile = string(default=None)
# Extended emissions from the clusters of galaxies
# The configurations in this ``[[clusters]]`` section may also be
# used by the following ``[[halos]]`` section.
[[clusters]]
# Output CSV file of the clusters catalog containing the simulated
# mass, redshift, position, shape, and the recent major merger info.
catalog_outfile = string(default=None)
# Directly use the (previously simulated) catalog file specified
# as the above "catalog_outfile" option.
# NOTE:
# By using an existing catalog, the steps to derive these data are
# simply skipped.
# Due to the small number density of the galaxy clusters, the simulated
# results within a small patch of sky (e.g., 100 [deg^2]) show
# significant fluctuations (several or even several tens of times
# of differences between simulations). Therefore, one may run many
# tests and only create images at some frequencies necessary for
# testing, then select the satisfying one to continue the simulation
# to generate images at all frequencies.
use_output_catalog = boolean(default=False)
# Output file for dumping the simulated cluster halos data in Python
# native *pickle* format (i.e., .pkl)
halos_dumpfile = string(default=None)
# The minimum mass for clusters when to determine the galaxy clusters
# total counts and their distributions.
# Unit: [Msun]
mass_min = float(default=2e14, min=1e12)
# Boost the number of expected cluster number within the sky coverage
# by the specified times.
# (NOTE: mainly for testing purpose.)
boost = float(default=1.0, min=0.1, max=1e4)
# Minimum mass change of the main cluster to be regarded as a merger
# event instead of an accretion event.
# Unit: [Msun]
merger_mass_min = float(default=1e12, min=1e10, max=1e14)
# Mass ratio of the main and sub clusters, below which is regarded as
# a major merger event.
ratio_major = float(default=3.0, min=1.0, max=10.0)
# The merger timescale, which roughly describes the duration of the
# merger-induced disturbance (~2-3 Gyr). This timescale is much longer
# the merger crossing time (~1 Gyr), and is also longer than the lifetime
# of radio halos.
# Unit: [Gyr]
tau_merger = float(default=2.0, min=1.0, max=5.0)
# Magnetic field scaling relation for clusters
# Reference: Cassano et al. 2012, A&A, 548, A100, Eq.(1)
#
# The mean magnetic field assumed
# Unit: [uG]
b_mean = float(default=1.9, min=0.1, max=10)
# The index of the scaling relation
b_index = float(default=1.5, min=0.0, max=3.0)
# Filename prefix for this component
prefix = string(default="cluster")
# Output directory to save the simulated results
output_dir = string(default=None)
# Giant radio halos for clusters with recent major mergers
[[halos]]
# Roughly the fraction of turbulence energy transformed to accelerate
# the electrons, describing the efficiency of turbulence acceleration.
eta_turb = float(default=0.2, min=0.1, max=1.0)
# Ratio of the total energy injected into cosmic-ray electrons during
# the cluster life to its total thermal energy.
eta_e = float(default=0.003, min=0.001, max=0.1)
# Minimum and maximum Lorentz factor (i.e., energy) of the relativistic
# electron spectrum.
gamma_min = float(default=1e1)
gamma_max = float(default=1e5)
# Number of momentum points/cells for solving the Fokker-Planck
# equation.
gamma_np = integer(default=200, min=50)
# Number of grid points used as the buffer region near the lower
# boundary, and the value within this buffer region will be fixed to
# avoid unphysical pile-up of low-energy electrons.
# Reference: Donnert & Brunetti 2014, MNRAS, 443, 3564, Sec.(3.3)
buffer_np = integer(default=5, min=0)
# Time step for solving the Fokker-Planck equation
# Unit: [Gyr]
time_step = float(default=0.02, min=1e-4, max=0.1)
# Electron injection, which is assumed to have a constant injection
# rate and a power-law spectrum.
injection_index = float(default=2.4, min=2.1, max=3.5)
# Extragalactic point sources
[[pointsources]]
# Output directory to save the simulated catalog
output_dir = string(default="PS_tables")
# PS components to be simulated
pscomponents = string_list(default=list())
# Resolution [arcmin]
resolution = float(default=0.6, min=0.0)
[[[starforming]]]
# Number of samples
numps = integer(default=1000)
# Prefix
prefix = string(default="SF")
[[[starbursting]]]
# Number of samples
numps = integer(default=1000)
# Prefix
prefix = string(default="SB")
[[[radioquiet]]]
# Number of samples
numps = integer(default=1000)
# Prefix
prefix = string(default="RQ")
[[[FRI]]]
# Number of samples
numps = integer(default=1000)
# Prefix
prefix = string(default="FRI")
[[[FRII]]]
# Number of samples
numps = integer(default=1000)
# Prefix
prefix = string(default="FRII")
|