1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
|
# Copyright (c) 2016-2017 Weitian LI <liweitianux@live.com>
# MIT license
"""
Cosmological models
"""
import logging
import numpy as np
from scipy import integrate
import astropy.units as au
from astropy.cosmology import LambdaCDM, z_at_value
logger = logging.getLogger(__name__)
class Cosmology:
"""
Cosmological model.
Attributes
----------
H0 : float
Hubble parameter at present day (z=0)
Om0 : float
Density parameter of matter at present day
Ode0 : float
Density parameter of dark energy at present day
model : str
Type of the current cosmological model:
* open : Om0 < 1, Ode0 = 0
* closed : Om0 > 1, Ode0 = 0
* EdS (Einstein-de Sitter) : Om0 = 1, Ode0 = 0
* flatLambdaCDM : Om0 + Ode0 = 1, Ode0 > 0
References
----------
[1] https://astro.uni-bonn.de/~pavel/WIKIPEDIA/Lambda-CDM_model.html
[2] https://en.wikipedia.org/wiki/Lambda-CDM_model
"""
def __init__(self, H0=71.0, Om0=0.27, Ob0=0.046, Ode0=None, sigma8=None):
Ode0 = 1.0 - Om0 if Ode0 is None else Ode0
if (Ode0 > 0) and abs(Om0 + Ode0 - 1) > 1e-5:
raise ValueError("non-flat LambdaCDM model not supported!")
self.H0 = H0 # [km/s/Mpc]
self.Om0 = Om0
self.Ob0 = Ob0
self.Ode0 = Ode0
self._sigma8 = sigma8
self.cosmo = LambdaCDM(H0=H0, Om0=Om0, Ob0=Ob0, Ode0=Ode0)
logger.info("Cosmological model: {0}".format(self.model))
@property
def model(self):
if self.Ode0 < 1e-5:
if self.Om0 < 1:
model = "open"
elif self.Om0 == 1:
model = "EdS"
else:
model = "closed"
else:
model = "flatLambdaCDM"
return model
@property
def h(self):
"""
Dimensionless/reduced Hubble parameter
"""
return self.H0 / 100.0
@property
def sigma8(self):
"""
Present-day rms density fluctuation on a scale of 8 h^-1 Mpc.
References
----------
[1] Randall, Sarazin & Ricker 2002, ApJ, 577, 579
http://adsabs.harvard.edu/abs/2002ApJ...577..579R
Sec.2
"""
if hasattr(self, "_sigma8"):
return self._sigma8
#
if self.model == "open":
sigma8 = 0.827
elif self.model == "closed":
raise NotImplementedError
elif self.model == "EdS":
sigma8 = 0.514
elif self.model == "flatLambdaCDM":
sigma8 = 0.834
else:
raise ValueError("unknown model: {0}".format(self.model))
return sigma8
@property
def M8(self):
"""
Mass contained in a sphere of radius of 8 h^-1 Mpc.
Unit: [Msun]
"""
r = 8 * au.Mpc.to(au.cm) / self.h # [cm]
M8 = (4*np.pi/3) * r**3 * self.rho_crit(0)
return (M8 * au.g.to(au.solMass))
def age(self, z):
"""
Cosmic time at redshift z.
Parameters
----------
z : float
Redshift
Returns
-------
age : float
Age of the universe (cosmic time) at the given redshift.
Unit: [Gyr]
"""
return self.cosmo.age(z).value
@property
def age0(self):
"""
Present age of the universe.
"""
if not hasattr(self, "_age0"):
self._age0 = self.age(0)
return self._age0
def redshift(self, age):
"""
Invert the above age calculation, to return the redshift
corresponding to the given cosmic time.
Parameters
----------
age : float
Age of the universe (cosmic time), unit [Gyr]
Returns
-------
z : float
Redshift corresponding to the input age.
"""
return z_at_value(self.age, age)
def rho_crit(self, z):
"""
Critical density at redshift z.
Unit: [g/cm^3]
"""
return self.cosmo.critical_density(0).value
def OmegaM(self, z):
"""
Density parameter of matter at redshift z.
"""
return self.Om0 * (1+z)**3 / self.cosmo.efunc(z)**2
def overdensity_virial(self, z):
"""
Calculate the virial overdensity, which generally used to
determine the virial radius of a cluster.
References
----------
[1] Cassano & Brunetti 2005, MNRAS, 357, 1313
http://adsabs.harvard.edu/abs/2005MNRAS.357.1313C
Eqs.(10,A4)
"""
if self.model == "open":
raise NotImplementedError
elif self.model == "closed":
raise NotImplementedError
elif self.model == "EdS":
Delta_c = 18 * np.pi**2
elif self.model == "flatLambdaCDM":
omega_z = (1 / self.OmegaM(z)) - 1
Delta_c = 18*np.pi**2 * (1 + 0.4093 * omega_z**0.9052)
else:
raise ValueError("unknown model: {0}".format(self.model))
return Delta_c
def overdensity_crit(self, z):
"""
Critical (linear) overdensity for a region to collapse
at a redshift z.
References
----------
[1] Randall, Sarazin & Ricker 2002, ApJ, 577, 579
http://adsabs.harvard.edu/abs/2002ApJ...577..579R
Appendix.A, Eq.(A1)
"""
if self.model == "open":
raise NotImplementedError
elif self.model == "closed":
raise NotImplementedError
elif self.model == "EdS":
coef = 3 * (12*np.pi) ** (2/3) / 20
delta_c = coef * (self.age(0) / self.age(z)) ** (2/3)
elif self.model == "flatLambdaCDM":
coef = 3 * (12*np.pi) ** (2/3) / 20
D0 = self.growth_factor(0)
D_z = self.growth_factor(z)
Om_z = self.OmegaM(z)
delta_c = coef * (D0 / D_z) * (1 + 0.0123*np.log10(Om_z))
else:
raise ValueError("unknown model: {0}".format(self.model))
return delta_c
def growth_factor(self, z):
"""
Growth factor at redshift z.
References
----------
[1] Randall, Sarazin & Ricker 2002, ApJ, 577, 579
http://adsabs.harvard.edu/abs/2002ApJ...577..579R
Appendix.A, Eq.(A7)
"""
if self.model == "open":
raise NotImplementedError
elif self.model == "closed":
raise NotImplementedError
elif self.model == "EdS":
raise NotImplementedError
elif self.model == "flatLambdaCDM":
x0 = (2 * self.Ode0 / self.Om0) ** (1/3)
x = x0 / (1 + z)
coef = np.sqrt(x**3 + 2) / (x**1.5)
integral = integrate.quad(lambda y: y**1.5 * (y**3+2)**(-1.5),
0, x)[0]
D = coef * integral
else:
raise ValueError("unknown model: {0}".format(self.model))
return D
|