aboutsummaryrefslogtreecommitdiffstats
path: root/fg21sim/extragalactic/clusters/cosmology.py
blob: 5f7b28320ca9c25ee1a909aa84329f8bfe85fe5d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
# Copyright (c) 2016-2017 Weitian LI <liweitianux@live.com>
# MIT license

"""
Flat ΛCDM cosmological model.
"""

import logging

import numpy as np
from scipy import integrate
import astropy.units as au
from astropy.cosmology import LambdaCDM, z_at_value


logger = logging.getLogger(__name__)


class Cosmology:
    """
    Flat ΛCDM cosmological model.

    Attributes
    ----------
    H0 : float
        Hubble parameter at present day (z=0)
    Om0 : float
        Density parameter of (dark and baryon) matter at present day
    Ob0 : float
        Density parameter of baryon at present day
    Ode0 : float
        Density parameter of dark energy at present day
    sigma8 : float
        Present-day rms density fluctuation on a scale of 8 h^-1 Mpc.

    References
    ----------
    [1] https://astro.uni-bonn.de/~pavel/WIKIPEDIA/Lambda-CDM_model.html
    [2] https://en.wikipedia.org/wiki/Lambda-CDM_model
    [3] Randall, Sarazin & Ricker 2002, ApJ, 577, 579
        http://adsabs.harvard.edu/abs/2002ApJ...577..579R
        Sec.(2)
    """
    def __init__(self, H0=71.0, Om0=0.27, Ob0=0.046, Ode0=None, sigma8=0.834):
        Ode0 = 1.0 - Om0 if Ode0 is None else Ode0
        if (Ode0 > 0) and abs(Om0 + Ode0 - 1) > 1e-5:
            raise ValueError("non-flat LambdaCDM model not supported!")
        self.H0 = H0  # [km/s/Mpc]
        self.Om0 = Om0
        self.Ob0 = Ob0
        self.Ode0 = Ode0
        self.sigma8 = sigma8
        self.cosmo = LambdaCDM(H0=H0, Om0=Om0, Ob0=Ob0, Ode0=Ode0)

    @property
    def h(self):
        """
        Dimensionless/reduced Hubble parameter
        """
        return self.H0 / 100.0

    @property
    def M8(self):
        """
        Mass contained in a sphere of radius of 8 h^-1 Mpc.
        Unit: [Msun]
        """
        r = 8 * au.Mpc.to(au.cm) / self.h  # [cm]
        M8 = (4*np.pi/3) * r**3 * self.rho_crit(0)
        return (M8 * au.g.to(au.solMass))

    def age(self, z):
        """
        Cosmic time at redshift z.

        Parameters
        ----------
        z : float
            Redshift

        Returns
        -------
        age : float
            Age of the universe (cosmic time) at the given redshift.
            Unit: [Gyr]
        """
        return self.cosmo.age(z).value

    @property
    def age0(self):
        """
        Present age of the universe.
        """
        if not hasattr(self, "_age0"):
            self._age0 = self.age(0)
        return self._age0

    def redshift(self, age):
        """
        Invert the above age calculation, to return the redshift
        corresponding to the given cosmic time.

        Parameters
        ----------
        age : float
            Age of the universe (cosmic time), unit [Gyr]

        Returns
        -------
        z : float
            Redshift corresponding to the input age.
        """
        return z_at_value(self.age, age)

    def rho_crit(self, z):
        """
        Critical density at redshift z.
        Unit: [g/cm^3]
        """
        return self.cosmo.critical_density(0).value

    def OmegaM(self, z):
        """
        Density parameter of matter at redshift z.
        """
        return self.Om0 * (1+z)**3 / self.cosmo.efunc(z)**2

    def overdensity_virial(self, z):
        """
        Calculate the virial overdensity, which generally used to
        determine the virial radius of a cluster.

        References
        ----------
        [1] Cassano & Brunetti 2005, MNRAS, 357, 1313
            http://adsabs.harvard.edu/abs/2005MNRAS.357.1313C
            Eqs.(10,A4)
        """
        omega_z = (1 / self.OmegaM(z)) - 1
        Delta_c = 18*np.pi**2 * (1 + 0.4093 * omega_z**0.9052)
        return Delta_c

    def overdensity_crit(self, z):
        """
        Critical (linear) overdensity for a region to collapse
        at a redshift z.

        References
        ----------
        [1] Randall, Sarazin & Ricker 2002, ApJ, 577, 579
            http://adsabs.harvard.edu/abs/2002ApJ...577..579R
            Appendix.A, Eq.(A1)
        """
        coef = 3 * (12*np.pi) ** (2/3) / 20
        D0 = self.growth_factor(0)
        D_z = self.growth_factor(z)
        Om_z = self.OmegaM(z)
        delta_c = coef * (D0 / D_z) * (1 + 0.0123*np.log10(Om_z))
        return delta_c

    def growth_factor(self, z):
        """
        Growth factor at redshift z.

        References
        ----------
        [1] Randall, Sarazin & Ricker 2002, ApJ, 577, 579
            http://adsabs.harvard.edu/abs/2002ApJ...577..579R
            Appendix.A, Eq.(A7)
        """
        x0 = (2 * self.Ode0 / self.Om0) ** (1/3)
        x = x0 / (1 + z)
        coef = np.sqrt(x**3 + 2) / (x**1.5)
        integral = integrate.quad(lambda y: y**1.5 * (y**3+2)**(-1.5),
                                  a=0, b=x)[0]
        D = coef * integral
        return D