1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
|
# Copyright (c) 2017 Weitian LI <weitian@aaronly.me>
# MIT license
"""
Calculate the synchrotron emission and inverse Compton emission
for simulated radio halos.
References
----------
.. [cassano2005]
Cassano & Brunetti 2005, MNRAS, 357, 1313
http://adsabs.harvard.edu/abs/2005MNRAS.357.1313C
Appendix.C
.. [era2016]
Condon & Ransom 2016
Essential Radio Astronomy
https://science.nrao.edu/opportunities/courses/era/
Chapter.5
"""
import logging
import numpy as np
import scipy.special
from scipy import integrate
from scipy import interpolate
from ...utils.units import (Units as AU, Constants as AC)
logger = logging.getLogger(__name__)
class SynchrotronEmission:
"""
Calculate the synchrotron emissivity from a given population
of electrons.
Parameters
----------
gamma : `~numpy.ndarray`
The Lorentz factors of electrons.
n_e : `~numpy.ndarray`
Electron number density spectrum.
Unit: [cm^-3]
B : float
The assumed uniform magnetic field within the cluster ICM.
Unit: [uG]
"""
def __init__(self, gamma, n_e, B):
self.gamma = np.asarray(gamma)
self.n_e = np.asarray(n_e)
self.B = B # [uG]
@property
def B_gauss(self):
"""
Magnetic field in unit of [G] (i.e., gauss)
"""
return self.B * 1e-6 # [uG] -> [G]
@property
def frequency_larmor(self):
"""
Electron Larmor frequency (a.k.a. gyro frequency):
ν_L = e * B / (2*π * m0 * c) = e * B / (2*π * mec)
=> ν_L [MHz] = 2.8 * B [G]
Unit: [MHz]
"""
nu_larmor = AC.e * self.B_gauss / (2*np.pi * AU.mec) # [Hz]
return nu_larmor * 1e-6 # [Hz] -> [MHz]
def frequency_crit(self, gamma, theta=np.pi/2):
"""
Synchrotron critical frequency.
Critical frequency:
ν_c = (3/2) * γ^2 * sin(θ) * ν_L
Parameters
----------
gamma : `~numpy.ndarray`
Electron Lorentz factors γ
theta : `~numpy.ndarray`, optional
The angles between the electron velocity and the magnetic field.
Unit: [rad]
Returns
-------
nu_c : `~numpy.ndarray`
Critical frequencies
Unit: [MHz]
"""
nu_c = 1.5 * gamma**2 * np.sin(theta) * self.frequency_larmor
return nu_c
def F(self, x):
"""
Synchrotron kernel function.
NOTE
----
* Use interpolation to optimize the speed, also avoid instabilities
near the lower end (e.g., x < 1e-5).
* Interpolation also helps vectorize this function for easier calling.
* Cache the interpolation results, since this function will be called
multiple times for each frequency.
Parameters
----------
x : `~numpy.ndarray`
Points where to calculate the kernel function values.
NOTE: X values will be bounded, e.g., within [1e-5, 20]
Returns
-------
y : `~numpy.ndarray`
Calculated kernel function values.
"""
if not hasattr(self, "_F_interp"):
# Interpolate the kernel function and cache the results
#
# The lower and upper cuts
xmin = 1e-5
xmax = 20.0
# Number of samples within [xmin, xmax]
# NOTE: this kernel function is quiet smooth and slow-varying.
nsamples = 128
# Make an interpolation
xx = np.logspace(np.log10(xmin), np.log10(xmax), num=nsamples)
Fxx = [xp * integrate.quad(lambda t: scipy.special.kv(5/3, t),
a=xp, b=np.inf)[0]
for xp in xx]
self._F_interp = interpolate.interp1d(xx, Fxx, kind="quadratic")
x = np.array(x) # Make a copy!
x[x < xmin] = xmin
x[x > xmax] = xmax
y = self._F_interp(x)
return y
def emissivity(self, frequencies):
"""
Calculate the synchrotron emissivity (power emitted per volume
and per frequency) at the requested frequency.
NOTE
----
Since ``self.gamma`` and ``self.n_e`` are sampled on a logarithmic
grid, we integrate over ``ln(gamma)`` instead of ``gamma`` directly:
I = int_gmin^gmax f(g) d(g)
= int_ln(gmin)^ln(gmax) f(g) g d(ln(g))
Parameters
----------
frequencies : float, or 1D `~numpy.ndarray`
The frequencies where to calculate the synchrotron emissivity.
Unit: [MHz]
Returns
-------
syncem : float, or 1D `~numpy.ndarray`
The calculated synchrotron emissivity at each specified
frequency.
Unit: [erg/s/cm^3/Hz]
"""
j_coef = np.sqrt(3) * AC.e**3 * self.B_gauss / AU.mec2
# Ignore the zero angle
theta = np.linspace(0, np.pi/2, num=len(self.gamma))[1:]
theta_grid, gamma_grid = np.meshgrid(theta, self.gamma)
nu_c = self.frequency_crit(gamma_grid, theta_grid)
# 2D grid of ``n_e(gamma) * sin^2(theta)``
nsin2 = np.outer(self.n_e, np.sin(theta)**2)
frequencies = np.array(frequencies, ndmin=1)
syncem = np.zeros(shape=frequencies.shape)
for i, freq in zip(range(len(frequencies)), frequencies):
logger.debug("Calc synchrotron emissivity at %.2f [MHz]" % freq)
kernel = self.F(freq / nu_c)
# 2D samples over width to do the integration
s2d = kernel * nsin2
# Integrate over ``theta`` (the last axis)
s1d = integrate.simps(s2d, x=theta)
# Integrate over energy ``gamma`` in logarithmic grid
syncem[i] = j_coef * integrate.simps(s1d*self.gamma,
np.log(self.gamma))
if len(syncem) == 1:
return syncem[0]
else:
return syncem
|