aboutsummaryrefslogtreecommitdiffstats
path: root/fg21sim/extragalactic/clusters/emission.py
blob: ddecab3d8a530663b4dbc3a06cc95cec30368300 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
# Copyright (c) 2017-2018 Weitian LI <weitian@aaronly.me>
# MIT license

"""
Calculate the synchrotron emission for a given relativistic electron
spectrum, e.g., derived for the simulated radio halos.

References
----------
.. [cassano2005]
   Cassano & Brunetti 2005, MNRAS, 357, 1313
   http://adsabs.harvard.edu/abs/2005MNRAS.357.1313C
   Appendix.C

.. [era2016]
   Condon & Ransom 2016
   Essential Radio Astronomy
   https://science.nrao.edu/opportunities/courses/era/
   Chapter.5

.. [you1998]
   You 1998
   The Radiation Mechanisms in Astrophysics, 2nd Edition, Beijing
   Sec.4.2.3, p.187
"""

import logging
from functools import lru_cache

import numpy as np
import scipy.special
from scipy import integrate, interpolate

from ...utils.units import (Units as AU, Constants as AC)


logger = logging.getLogger(__name__)


def _interp_sync_kernel(xmin=1e-3, xmax=10.0, xsample=256):
    """
    Sample the synchrotron kernel function at the specified X
    positions and make an interpolation, to optimize the speed
    when invoked to calculate the synchrotron emissivity.

    WARNING
    -------
    Do NOT simply bound the synchrotron kernel within the specified
    [xmin, xmax] range, since it decreases as a power law of index
    1/3 at the left end, and decreases exponentially at the right end.
    Bounding it with interpolation will cause the synchrotron emissivity
    been *overestimated* on the higher frequencies.

    Parameters
    ----------
    xmin, xmax : float, optional
        The lower and upper cuts for the kernel function.
        Default: [1e-3, 10.0]
    xsample : int, optional
        Number of samples within [xmin, xmax] used to do interpolation.

    Returns
    -------
    F_interp : function
        The interpolated kernel function ``F(x)``.
    """
    xx = np.logspace(np.log10(xmin), np.log10(xmax), num=xsample)
    Fxx = [xp * integrate.quad(lambda t: scipy.special.kv(5/3, t),
                               a=xp, b=np.inf)[0]
           for xp in xx]
    F_interp = interpolate.interp1d(xx, Fxx, kind="quadratic",
                                    bounds_error=True, assume_sorted=True)
    return F_interp


class SynchrotronEmission:
    """
    Calculate the synchrotron emissivity from a given population
    of electrons.

    Parameters
    ----------
    gamma : `~numpy.ndarray`
        The Lorentz factors of electrons.
    n_e : `~numpy.ndarray`
        Electron number density spectrum.
        Unit: [cm^-3]
    B : float
        The assumed uniform magnetic field within the cluster ICM.
        Unit: [uG]
    """
    # The interpolated synchrotron kernel function ``F(x)`` within
    # the specified range.
    # NOTE: See the *WARNING* above.
    F_xmin = 1e-3
    F_xmax = 10.0
    F_xsample = 256
    F_interp = _interp_sync_kernel(F_xmin, F_xmax, F_xsample)

    def __init__(self, gamma, n_e, B):
        self.gamma = np.asarray(gamma)
        self.n_e = np.asarray(n_e)
        self.B = B  # [uG]

    @property
    @lru_cache()
    def B_gauss(self):
        """
        Magnetic field in unit of [G] (i.e., Gauss)
        """
        return self.B * 1e-6  # [uG] -> [G]

    @property
    @lru_cache()
    def frequency_larmor(self):
        """
        Electron Larmor frequency (a.k.a. gyro frequency):
            ν_L = e * B / (2*π * m0 * c) = e * B / (2*π * mec)
        =>  ν_L [MHz] = 2.8 * B [G]

        Unit: [MHz]
        """
        nu_larmor = AC.e * self.B_gauss / (2*np.pi * AU.mec)  # [Hz]
        return nu_larmor * 1e-6  # [Hz] -> [MHz]

    def frequency_crit(self, gamma, theta=np.pi/2):
        """
        Synchrotron critical frequency.

        Critical frequency:
            ν_c = (3/2) * γ^2 * sin(θ) * ν_L

        Parameters
        ----------
        gamma : `~numpy.ndarray`
            Electron Lorentz factors γ
        theta : `~numpy.ndarray`, optional
            The angles between the electron velocity and the magnetic field,
            the pitch angle.
            Unit: [rad]

        Returns
        -------
        nu_c : `~numpy.ndarray`
            Critical frequencies
            Unit: [MHz]
        """
        nu_c = 1.5 * gamma**2 * np.sin(theta) * self.frequency_larmor
        return nu_c

    @classmethod
    def F(cls, x):
        """
        Synchrotron kernel function using interpolation to improve speed.

        Parameters
        ----------
        x : `~numpy.ndarray`
            Points where to calculate the kernel function values.
            NOTE: X values will be bounded, e.g., within [1e-5, 20]

        Returns
        -------
        y : `~numpy.ndarray`
            Calculated kernel function values.

        References: Ref.[you1998]
        """
        x = np.array(x, ndmin=1)
        y = np.zeros(x.shape)
        idx = (x >= cls.F_xmin) & (x <= cls.F_xmax)
        y[idx] = cls.F_interp(x[idx])
        # Left end: power law of index 1/3
        idx = (x < cls.F_xmin)
        A = cls.F_interp(cls.F_xmin)
        y[idx] = A * (x[idx] / cls.F_xmin)**(1/3)
        # Right end: exponentially decrease
        idx = (x > cls.F_xmax)
        y[idx] = (0.5*np.pi * x[idx])**0.5 * np.exp(-x[idx])
        return y

    def emissivity(self, frequencies):
        """
        Calculate the synchrotron emissivity (power emitted per volume
        and per frequency) at the requested frequency.

        NOTE
        ----
        Since ``self.gamma`` and ``self.n_e`` are sampled on a logarithmic
        grid, we integrate over ``ln(gamma)`` instead of ``gamma`` directly:
            I = int_gmin^gmax f(g) d(g)
              = int_ln(gmin)^ln(gmax) f(g) g d(ln(g))

        The pitch angles of electrons w.r.t. the magnetic field are assumed
        to be ``pi/2``, which maybe a good simplification.

        Parameters
        ----------
        frequencies : float, or 1D `~numpy.ndarray`
            The frequencies where to calculate the synchrotron emissivity.
            Unit: [MHz]

        Returns
        -------
        syncem : float, or 1D `~numpy.ndarray`
            The calculated synchrotron emissivity at each specified
            frequency.
            Unit: [erg/s/cm^3/Hz]
        """
        j_coef = np.sqrt(3) * AC.e**3 * self.B_gauss / AU.mec2
        nu_c = self.frequency_crit(self.gamma)

        frequencies = np.array(frequencies, ndmin=1)
        syncem = np.zeros(shape=frequencies.shape)
        for i, freq in enumerate(frequencies):
            logger.debug("Calculating emissivity at %.2f [MHz]" % freq)
            kernel = self.F(freq / nu_c)
            # Integrate over energy ``gamma`` in logarithmic grid
            syncem[i] = j_coef * integrate.simps(
                self.n_e*kernel*self.gamma, x=np.log(self.gamma))

        if len(syncem) == 1:
            return syncem[0]
        else:
            return syncem