aboutsummaryrefslogtreecommitdiffstats
path: root/fg21sim/extragalactic/clusters/halo.py
blob: 8ef664000fe261e08949cf83a03c22a947abb1c1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
# Copyright (c) 2017 Weitian LI <weitian@aaronly.me>
# MIT license

"""
Simulate (giant) radio halo originating from the last/recent
cluster-cluster major merger event, following the "statistical
magneto-turbulent model" proposed by [cassano2005]_, but with many
modifications and simplifications.

References
----------
.. [brunetti2011]
   Brunetti & Lazarian 2011, MNRAS, 410, 127
   http://adsabs.harvard.edu/abs/2011MNRAS.410..127B

.. [brunetti2016]
   Brunetti 2016, PPCF, 58, 014011
   http://adsabs.harvard.edu/abs/2016PPCF...58a4011B

.. [cassano2005]
   Cassano & Brunetti 2005, MNRAS, 357, 1313
   http://adsabs.harvard.edu/abs/2005MNRAS.357.1313C

.. [cassano2006]
   Cassano, Brunetti & Setti, 2006, MNRAS, 369, 1577
   http://adsabs.harvard.edu/abs/2006MNRAS.369.1577C

.. [cassano2012]
   Cassano et al. 2012, A&A, 548, A100
   http://adsabs.harvard.edu/abs/2012A%26A...548A.100C

.. [donnert2013]
   Donnert 2013, AN, 334, 615
   http://adsabs.harvard.edu/abs/2013AN....334..515D

.. [donnert2014]
   Donnert & Brunetti 2014, MNRAS, 443, 3564
   http://adsabs.harvard.edu/abs/2014MNRAS.443.3564D

.. [hogg1999]
   Hogg 1999, arXiv:astro-ph/9905116
   http://adsabs.harvard.edu/abs/1999astro.ph..5116H

.. [miniati2015]
   Miniati & Beresnyak 2015, Nature, 523, 59
   http://adsabs.harvard.edu/abs/2015Natur.523...59M

.. [sarazin1999]
   Sarazin 1999, ApJ, 520, 529
   http://adsabs.harvard.edu/abs/1999ApJ...520..529S
"""

import logging
from functools import lru_cache

import numpy as np

from . import helper
from .solver import FokkerPlanckSolver
from .emission import SynchrotronEmission
from ...share import CONFIGS, COSMO
from ...utils.units import (Units as AU,
                            UnitConversions as AUC,
                            Constants as AC)
from ...utils.convert import Fnu_to_Tb


logger = logging.getLogger(__name__)


class RadioHalo:
    """
    Simulate the extended radio halo emission from the galaxy cluster
    experiencing on-going/recent merger.

    Description
    -----------
    1. Calculate the merger crossing time (t_cross; ~1 Gyr);
    2. Calculate the diffusion coefficient (Dpp) from the systematic
       acceleration timescale (tau_acc; ~0.1 Gyr).  The acceleration
       diffusion is assumed to have an action time ~ t_cross (i.e.,
       only during merger crossing), and then been disabled (i.e.,
       only radiation and ionization losses later);
    3. Assume the electrons are constantly injected and has a power-law
       energy spectrum, determine the injection rate by further assuming
       that the total injected electrons has energy of a fraction (eta_e)
       of the ICM total thermal energy;
    4. Set the initial electron density/spectrum be the total injected
       electrons during t_merger time;
    5. Calculate the magnetic field from the cluster total mass (which
       is assumed to be growth linearly from M_main+M_sub to M_obs);
    6. Calculate the energy losses for the coefficients of Fokker-Planck
       equation;
    7. Solve the Fokker-Planck equation to derive the relativistic
       electron spectrum at t_obs (i.e., z_obs);
    8. Calculate the synchrotron emissivity from the derived electron
       spectrum.

    Parameters
    ----------
    M_obs : float
        Cluster virial mass at the current observation (simulation end) time.
        Unit: [Msun]
    z_obs : float
        Redshift of the current observation (simulation end) time.
    M_main, M_sub : float
        The main and sub cluster masses before the (major) merger.
        Unit: [Msun]
    z_merger : float
        The redshift when the (major) merger begins.

    Attributes
    ----------
    fpsolver : `~FokkerPlanckSolver`
        The solver instance to calculate the electron spectrum evolution.
    radius : float
        The halo radius
        Unit: [kpc]
    gamma : 1D float `~numpy.ndarray`
        The Lorentz factors of the adopted logarithmic grid to solve the
        equation.
    electron_spec : 1D float `~numpy.ndarray`
        The derived electron (number density) distribution/spectrum at
        the final time (``zend``), which is set by the methods
        ``self.calc_electron_spectrum()`` or ``self.set_electron_spectrum()``.
        Unit: [cm^-3]
    """
    def __init__(self, M_obs, z_obs, M_main, M_sub, z_merger,
                 configs=CONFIGS):
        self.M_obs = M_obs
        self.z_obs = z_obs
        self.M_main = M_main
        self.M_sub = M_sub
        self.z_merger = z_merger

        self.configs = configs
        self._set_configs()
        self._set_solver()

    def _set_configs(self):
        comp = "extragalactic/halos"
        self.f_lturb = self.configs.getn(comp+"/f_lturb")
        self.f_acc = self.configs.getn(comp+"/f_acc")
        self.eta_turb = self.configs.getn(comp+"/eta_turb")
        self.eta_e = self.configs.getn(comp+"/eta_e")
        self.gamma_min = self.configs.getn(comp+"/gamma_min")
        self.gamma_max = self.configs.getn(comp+"/gamma_max")
        self.gamma_np = self.configs.getn(comp+"/gamma_np")
        self.buffer_np = self.configs.getn(comp+"/buffer_np")
        self.time_step = self.configs.getn(comp+"/time_step")
        self.injection_index = self.configs.getn(comp+"/injection_index")

    def _set_solver(self):
        self.fpsolver = FokkerPlanckSolver(
            xmin=self.gamma_min, xmax=self.gamma_max,
            x_np=self.gamma_np,
            tstep=self.time_step,
            f_advection=self.fp_advection,
            f_diffusion=self.fp_diffusion,
            f_injection=self.fp_injection,
            buffer_np=self.buffer_np,
        )

    @property
    @lru_cache()
    def gamma(self):
        """
        The logarithmic grid adopted for solving the equation.
        """
        return self.fpsolver.x

    @property
    def age_obs(self):
        return COSMO.age(self.z_obs)

    @property
    def age_merger(self):
        return COSMO.age(self.z_merger)

    @property
    def tback_merger(self):
        """
        The time from the observation (``z_obs``) back to the merger
        (``z_merger``).
        """
        return (self.age_obs - self.age_merger)  # [Gyr]

    @property
    @lru_cache()
    def time_crossing(self):
        """
        The time duration of the sub-cluster crossing the main cluster,
        which is also used to approximate the merging time, during which
        the turbulence acceleration is regarded as effective.

        Unit: [Gyr]
        """
        return helper.time_crossing(self.M_main, self.M_sub,
                                    z=self.z_merger)

    @property
    def radius_virial_obs(self):
        """
        The virial radius of the "current" cluster (``M_obs``) at
        ``z_obs``.

        Unit: [kpc]
        """
        return helper.radius_virial(mass=self.M_obs, z=self.z_obs)

    @property
    def radius_virial_main(self):
        """
        The virial radius of the main cluster at ``z_merger``.
        """
        return helper.radius_virial(mass=self.M_main, z=self.z_merger)

    @property
    def radius_virial_sub(self):
        return helper.radius_virial(mass=self.M_sub, z=self.z_merger)

    @property
    @lru_cache()
    def radius(self):
        """
        The estimated radius for the simulated radio halo.

        NOTE
        ----
        The halo radius is assumed to be the virial radius of the falling
        sub-cluster.  See ``helper.radius_halo()`` for more details.

        Unit: [kpc]
        """
        r_halo = helper.radius_halo(self.M_main, self.M_sub,
                                    self.z_merger)
        return r_halo

    @property
    def angular_radius(self):
        """
        The angular radius of the radio halo.

        Unit: [arcsec]
        """
        DA = COSMO.DA(self.z_obs) * 1e3  # [Mpc] -> [kpc]
        theta = self.radius / DA  # [rad]
        return theta * AUC.rad2arcsec

    @property
    def volume(self):
        """
        The halo volume, calculated from the above radius.

        Unit: [kpc^3]
        """
        return (4*np.pi/3) * self.radius**3

    @property
    @lru_cache()
    def magnetic_field(self):
        """
        The magnetic field strength at the simulated observation
        time (i.e., cluster mass of ``self.M_obs``), will be used
        to calculate the synchrotron emissions.

        Unit: [uG]
        """
        return helper.magnetic_field(mass=self.M_obs, z=self.z_obs)

    @property
    @lru_cache()
    def kT_main(self):
        """
        The mean temperature of the main cluster ICM at ``z_merger``
        when the merger begins.

        Unit: [keV]
        """
        return helper.kT_cluster(mass=self.M_main, z=self.z_merger)

    @property
    @lru_cache()
    def kT_sub(self):
        return helper.kT_cluster(mass=self.M_sub, z=self.z_merger)

    @property
    @lru_cache()
    def kT_obs(self):
        """
        The "current" cluster ICM mean temperature at ``z_obs``.
        """
        return helper.kT_cluster(self.M_obs, z=self.z_obs)  # [keV]

    @property
    @lru_cache()
    def Mach_turbulence(self):
        """
        The Mach number of the merger-induced turbulence.

        The turbulence  Mach number:
            Mach_turb = sqrt(<δv>^2) / c_s
                      ≅ sqrt(sqrt(3)/α) * sqrt(η_turb/0.37)
        where:
        c_s is the sound speed,
        α is a parameter ranges about 1.5-3, and we take it as:
            α = 3^(3/2) / 2 ≅ 2.6
        η_turb describes the fraction of thermal energy originating from
        turbulent dissipation, ~0.3.

        Reference: Ref.[miniati2015],Eq.(1)
        """
        alpha = 3**1.5 / 2
        mach = np.sqrt(3**0.5 * self.eta_turb / alpha / 0.37)
        return mach

    @property
    @lru_cache()
    def tau_acceleration(self):
        """
        Calculate the electron acceleration timescale due to turbulent
        waves at the given (cosmic) time, which describes the turbulent
        acceleration efficiency.

        Unit: [Gyr]

        NOTE
        ----
        Generally, the turbulent acceleration timescale is about 0.1 Gyr.
        It is shown that this acceleration timescale depends weakly on
        cluster mass and redshift, therefore, its value is derived at the
        beginning of the merger and assumed to be constant throughout the
        merging period.

        Reference: Ref.[brunetti2016],Eq.(8,9)
        """
        Mach = self.Mach_turbulence
        Rvir = helper.radius_virial(mass=self.M_main, z=self.z_merger)
        cs = helper.speed_sound(self.kT_main)  # [km/s]
        # Turbulence injection scale
        L0 = self.f_lturb * Rvir  # [kpc]
        x = cs*AUC.km2cm / AC.c
        fx = x * (x**4/4 + x*x - (1+2*x*x) * np.log(x) - 5/4)
        term1 = self.f_acc * 2.5 / fx / (Mach/0.5)**4
        term2 = (L0/300) / (cs/1500)
        tau = term1 * term2 / 1000  # [Gyr]
        return tau

    @property
    @lru_cache()
    def injection_rate(self):
        """
        The constant electron injection rate assumed.
        Unit: [cm^-3 Gyr^-1]

        The injection rate is parametrized by assuming that the total
        energy injected in the relativistic electrons during the cluster
        life (e.g., ``age_obs`` here) is a fraction (``self.eta_e``)
        of the total thermal energy of the cluster.

        The electrons are assumed to be injected throughout the cluster
        ICM/volume, i.e., do not restricted inside the halo volume.

        Qe(γ) = Ke * γ^(-s),
        int[ Qe(γ) γ me c^2 ]dγ * t_cluster = eta_e * e_th
        =>
        Ke = [(s-2) * eta_e * e_th * γ_min^(s-2) / (me * c^2 * t_cluster)]

        References
        ----------
        Ref.[cassano2005],Eqs.(31,32,33)
        """
        s = self.injection_index
        e_thermal = helper.density_energy_thermal(self.M_obs, self.z_obs)
        term1 = (s-2) * self.eta_e * e_thermal  # [erg cm^-3]
        term2 = self.gamma_min**(s-2)
        term3 = AU.mec2 * self.age_obs  # [erg Gyr]
        Ke = term1 * term2 / term3  # [cm^-3 Gyr^-1]
        return Ke

    def calc_electron_spectrum(self, zbegin=None, zend=None, n0_e=None):
        """
        Calculate the relativistic electron spectrum by solving the
        Fokker-Planck equation.

        Parameters
        ----------
        zbegin : float, optional
            The redshift from where to solve the Fokker-Planck equation.
            Default: ``self.z_merger``.
        zend : float, optional
            The redshift where to stop solving the Fokker-Planck equation.
            Default: ``self.z_obs``.
        n0_e : 1D `~numpy.ndarray`, optional
            The initial electron number distribution.
            Unit: [cm^-3].
            Default: accumulated constantly injected electrons until zbegin.

        Returns
        -------
        electron_spec : float 1D `~numpy.ndarray`
            The solved electron spectrum at ``zend``.
            Unit: [cm^-3]
        """
        if zbegin is None:
            tstart = COSMO.age(self.z_merger)
        else:
            tstart = COSMO.age(zbegin)
        if zend is None:
            tstop = COSMO.age(self.z_obs)
        else:
            tstop = COSMO.age(zend)
        if n0_e is None:
            # Accumulated constantly injected electrons until ``tstart``.
            n_inj = self.fp_injection(self.gamma)
            n0_e = n_inj * tstart

        # When the evolution time is too short, decrease the time step
        # to improve the results.
        # XXX: is this necessary???
        nstep_min = 20
        if (tstop - tstart) / self.time_step < nstep_min:
            tstep = (tstop - tstart) / nstep_min
            logger.debug("Decreased time step: %g -> %g [Gyr]" %
                         (self.time_step, self.fpsolver.tstep))
            self.fpsolver.tstep = tstep

        self.electron_spec = self.fpsolver.solve(u0=n0_e, tstart=tstart,
                                                 tstop=tstop)
        return self.electron_spec

    def set_electron_spectrum(self, n_e):
        """
        Check the given electron spectrum and set it to the
        ``self.electron_spec``.

        Parameters
        ----------
        n_e : float 1D `~numpy.ndarray`
            The solved electron spectrum at ``zend``.
            Unit: [cm^-3]
        """
        n_e = np.array(n_e)  # make a copy
        if n_e.shape == self.gamma.shape:
            self.electron_spec = n_e
        else:
            raise ValueError("given electron spectrum has wrong shape!")

    def calc_emissivity(self, frequencies, n_e=None, gamma=None, B=None):
        """
        Calculate the synchrotron emissivity for the derived electron
        spectrum.

        Parameters
        ----------
        frequencies : float, or 1D `~numpy.ndarray`
            The frequencies where to calculate the synchrotron emissivity.
            Unit: [MHz]
        n_e : 1D `~numpy.ndarray`, optional
            The electron spectrum (w.r.t. Lorentz factors γ).
            If not provided, then use the cached ``self.electron_spec``
            that was solved at above.
            Unit: [cm^-3]
        gamma : 1D `~numpy.ndarray`, optional
            The Lorentz factors γ of the electron spectrum.
            If not provided, then use ``self.gamma``.
        B : float, optional
            The magnetic field strength.
            If not provided, then use ``self.magnetic_field``.
            Unit: [uG]

        Returns
        -------
        emissivity : float, or 1D `~numpy.ndarray`
            The calculated synchrotron emissivity at each specified
            frequency.
            Unit: [erg/s/cm^3/Hz]
        """
        if n_e is None:
            n_e = self.electron_spec
        if gamma is None:
            gamma = self.gamma
        if B is None:
            B = self.magnetic_field
        syncem = SynchrotronEmission(gamma=gamma, n_e=n_e, B=B)
        emissivity = syncem.emissivity(frequencies)
        return emissivity

    def calc_power(self, frequencies, emissivity=None, **kwargs):
        """
        Calculate the halo synchrotron power (i.e., power *emitted* per
        unit frequency) by assuming the emissivity is uniform throughout
        the halo volume.

        NOTE
        ----
        The calculated power (a.k.a. spectral luminosity) is in units of
        [W/Hz] which is common in radio astronomy, instead of [erg/s/Hz].
            1 [W] = 1e7 [erg/s]

        Parameters
        ----------
        frequencies : float, or 1D `~numpy.ndarray`
            The frequencies where to calculate the synchrotron power.
            Unit: [MHz]
        emissivity : float, or 1D `~numpy.ndarray`, optional
            The synchrotron emissivity at the input frequencies.
            If not provided, then invoke above ``calc_emissivity()``
            method to calculate them.
            Unit: [erg/s/cm^3/Hz]
        **kwargs : optional arguments, i.e., ``n_e``, ``gamma``, and ``B``.

        Returns
        -------
        power : float, or 1D `~numpy.ndarray`
            The calculated synchrotron power at each input frequency.
            Unit: [W/Hz]
        """
        frequencies = np.asarray(frequencies)
        if emissivity is None:
            emissivity = self.calc_emissivity(frequencies=frequencies,
                                              **kwargs)
        else:
            emissivity = np.asarray(emissivity)
            if emissivity.shape != frequencies.shape:
                raise ValueError("input 'frequencies' and 'emissivity' "
                                 "do not match")
        power = emissivity * (self.volume * AUC.kpc2cm**3)  # [erg/s/Hz]
        power *= 1e-7  # [erg/s/Hz] -> [W/Hz]
        return power

    def calc_flux(self, frequencies, **kwargs):
        """
        Calculate the synchrotron flux density (i.e., power *observed*
        per unit frequency) of the halo, with k-correction considered.

        NOTE
        ----
        The *k-correction* must be applied to the flux density (Sν) or
        specific luminosity (Lν) because the redshifted object is emitting
        flux in a different band than that in which you are observing.
        And the k-correction depends on the spectrum of the object in
        question.  For any other spectrum (i.e., vLv != const.), the flux
        density Sv is related to the specific luminosity Lv by:
            Sv = (1+z) L_v(1+z) / (4π DL^2),
        where
        * L_v(1+z) is the specific luminosity emitting at frequency v(1+z),
        * DL is the luminosity distance to the object at redshift z.

        Reference: Ref.[hogg1999],Eq.(22)

        Parameters
        ----------
        frequencies : float, or 1D `~numpy.ndarray`
            The frequencies where to calculate the flux density.
            Unit: [MHz]
        **kwargs : optional arguments, i.e., ``n_e``, ``gamma``, and ``B``.

        Returns
        -------
        flux : float, or 1D `~numpy.ndarray`
            The calculated flux density w.r.t. each input frequency.
            Unit: [Jy] = 1e-23 [erg/s/cm^2/Hz] = 1e-26 [W/m^2/Hz]
        """
        z = self.z_obs
        freqz = np.asarray(frequencies) * (1+z)
        power = self.calc_power(freqz, **kwargs)  # [W/Hz]
        DL = COSMO.DL(self.z_obs) * AUC.Mpc2m  # [m]
        flux = 1e26 * (1+z) * power / (4*np.pi * DL*DL)  # [Jy]
        return flux

    def calc_brightness_mean(self, frequencies, flux=None, pixelsize=None,
                             **kwargs):
        """
        Calculate the mean surface brightness (power observed per unit
        frequency and per unit solid angle) expressed in *brightness
        temperature* at the specified frequencies.

        NOTE
        ----
        If the solid angle that the object extends is smaller than the
        specified pixel area, then is is assumed to have size of 1 pixel.

        Parameters
        ----------
        frequencies : float, or 1D `~numpy.ndarray`
            The frequencies where to calculate the mean brightness temperature
            Unit: [MHz]
        flux : float, or 1D `~numpy.ndarray`, optional
            The flux density w.r.t. each input frequency.
            Unit: [Jy]
        pixelsize : float, optional
            The pixel size of the output simulated sky image.
            If not provided, then invoke above ``calc_flux()`` method to
            calculate them.
            Unit: [arcsec]
        **kwargs : optional arguments, i.e., ``n_e``, ``gamma``, and ``B``.

        Returns
        -------
        Tb : float, or 1D `~numpy.ndarray`
            The mean brightness temperature at each frequency.
            Unit: [K] <-> [Jy/pixel]
        """
        frequencies = np.asarray(frequencies)
        if flux is None:
            flux = self.calc_flux(frequencies=frequencies, **kwargs)  # [Jy]
        else:
            flux = np.asarray(flux)
            if flux.shape != frequencies.shape:
                raise ValueError("input 'frequencies' and 'flux' do not match")

        omega = np.pi * self.angular_radius**2  # [arcsec^2]
        if pixelsize and (omega < pixelsize**2):
            omega = pixelsize ** 2  # [arcsec^2]
            logger.warning("Object size < 1 pixel; force to be 1 pixel!")

        Tb = Fnu_to_Tb(flux, omega, frequencies)  # [K]
        return Tb

    def fp_injection(self, gamma, t=None):
        """
        Electron injection (rate) term for the Fokker-Planck equation.

        NOTE
        ----
        The injected electrons are assumed to have a power-law spectrum
        and a constant injection rate.

        Qe(γ) = Ke * γ^(-s),
        Ke: constant injection rate

        Parameters
        ----------
        gamma : float, or float 1D `~numpy.ndarray`
            Lorentz factors of electrons
        t : None
            Currently a constant injection rate is assumed, therefore
            this parameter is not used.  Keep it for the consistency
            with other functions.

        Returns
        -------
        Qe : float, or float 1D `~numpy.ndarray`
            Current electron injection rate at specified energies (gamma).
            Unit: [cm^-3 Gyr^-1]

        References
        ----------
        Ref.[cassano2005],Eqs.(31,32,33)
        """
        Ke = self.injection_rate  # [cm^-3 Gyr^-1]
        Qe = Ke * gamma**(-self.injection_index)
        return Qe

    def fp_diffusion(self, gamma, t):
        """
        Diffusion term/coefficient for the Fokker-Planck equation.

        The diffusion is directly related to the electron acceleration
        which is described by the ``tau_acc`` acceleration timescale
        parameter.

        NOTE
        ----
        Considering that the turbulence acceleration is a 2nd-order Fermi
        process, it has only an effective acceleration time of several 1e8
        years.  Therefore, the turbulence is assumed to only accelerate
        the electrons during the merging period, i.e., the acceleration
        timescale is set to be infinite after "t_merger + time_cross".

        However, a zero diffusion coefficient may lead to unstable/wrong
        results, so constrain the acceleration timescale to be a large
        enough but finite number (e.g., 10 Gyr).

        Parameters
        ----------
        gamma : float, or float 1D `~numpy.ndarray`
            The Lorentz factors of electrons
        t : float
            Current (cosmic) time when solving the equation
            Unit: [Gyr]

        Returns
        -------
        diffusion : float, or float 1D `~numpy.ndarray`
            Diffusion coefficients
            Unit: [Gyr^-1]

        References
        ----------
        Ref.[donnert2013],Eq.(15)
        """
        if t < (self.age_merger + self.time_crossing):
            tau_acc = self.tau_acceleration  # [Gyr]
        else:
            # The large enough timescale to avoid unstable results
            tau_acc = 10.0  # [Gyr]
        diffusion = gamma**2 / 4 / tau_acc
        return diffusion

    def fp_advection(self, gamma, t):
        """
        Advection term/coefficient for the Fokker-Planck equation,
        which describes a systematic tendency for upward or downard
        drift of particles.

        This term is also called the "generalized cooling function"
        by [donnert2014], which includes all relevant energy loss
        functions and the energy gain function due to turbulence.

        Returns
        -------
        advection : float, or float 1D `~numpy.ndarray`
            Advection coefficients, describing the energy loss/gain rates.
            Unit: [Gyr^-1]
        """
        advection = (abs(self._loss_ion(gamma, t)) +
                     abs(self._loss_rad(gamma, t)) -
                     (self.fp_diffusion(gamma, t) * 2 / gamma))
        return advection

    def _mass(self, t):
        """
        Calculate the main cluster mass at the given (cosmic) time.

        NOTE
        ----
        We assume that the main cluster grows (i.e., gains mass) linearly
        in time from (M_main, z_merge) to (M_obs, z_obs).

        Parameters
        ----------
        t : float
            The (cosmic) time/age.
            Unit: [Gyr]

        Returns
        -------
        mass : float
            The mass of the main cluster.
            Unit: [Msun]
        """
        t_merger = self.age_merger
        rate = (self.M_obs - self.M_main) / (self.age_obs - t_merger)
        mass = rate * (t - t_merger) + self.M_main
        return mass

    def _loss_ion(self, gamma, t):
        """
        Energy loss through ionization and Coulomb collisions.

        Parameters
        ----------
        gamma : float, or float 1D `~numpy.ndarray`
            The Lorentz factors of electrons
        t : float
            The cosmic time/age
            Unit: [Gyr]

        Returns
        -------
        loss : float, or float 1D `~numpy.ndarray`
            The energy loss rates
            Unit: [Gyr^-1]

        References
        ----------
        Ref.[sarazin1999],Eq.(9)
        """
        z = COSMO.redshift(t)
        mass = self._mass(t)
        n_th = helper.density_number_thermal(mass, z)  # [cm^-3]
        loss = -3.79e4 * n_th * (1 + np.log(gamma/n_th) / 75)
        return loss

    def _loss_rad(self, gamma, t):
        """
        Energy loss via synchrotron emission and inverse Compton
        scattering off the CMB photons.

        References
        ----------
        Ref.[sarazin1999],Eq.(6,7)
        """
        z = COSMO.redshift(t)
        mass = self._mass(t)  # [Msun]
        B = helper.magnetic_field(mass=mass, z=z)  # [uG]
        loss = -4.32e-4 * gamma**2 * ((B/3.25)**2 + (1+z)**4)
        return loss