aboutsummaryrefslogtreecommitdiffstats
path: root/fg21sim/extragalactic/clusters/halo.py
blob: d11004f4ce79f26d4c2d80c2f029e043b48e690e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
# Copyright (c) 2017 Weitian LI <weitian@aaronly.me>
# MIT license

"""
Simulate (giant) radio halo originating from the last/ most recent
cluster-cluster major merger event, following the "statistical
magneto-turbulent model" proposed by [cassano2005]_, but with many
modifications and simplifications.

References
----------
.. [brunetti2011]
   Brunetti & Lazarian 2011, MNRAS, 410, 127
   http://adsabs.harvard.edu/abs/2011MNRAS.410..127B

.. [cassano2005]
   Cassano & Brunetti 2005, MNRAS, 357, 1313
   http://adsabs.harvard.edu/abs/2005MNRAS.357.1313C

.. [cassano2006]
   Cassano, Brunetti & Setti, 2006, MNRAS, 369, 1577
   http://adsabs.harvard.edu/abs/2006MNRAS.369.1577C

.. [cassano2012]
   Cassano et al. 2012, A&A, 548, A100
   http://adsabs.harvard.edu/abs/2012A%26A...548A.100C

.. [donnert2013]
   Donnert 2013, AN, 334, 615
   http://adsabs.harvard.edu/abs/2013AN....334..515D

.. [donnert2014]
   Donnert & Brunetti 2014, MNRAS, 443, 3564
   http://adsabs.harvard.edu/abs/2014MNRAS.443.3564D

.. [sarazin1999]
   Sarazin 1999, ApJ, 520, 529
   http://adsabs.harvard.edu/abs/1999ApJ...520..529S
"""

import logging

import numpy as np

from . import helper
from .solver import FokkerPlanckSolver
from .emission import SynchrotronEmission
from ...share import CONFIGS, COSMO
from ...utils.units import (Units as AU,
                            UnitConversions as AUC)
from ...utils.convert import Fnu_to_Tb_fast


logger = logging.getLogger(__name__)


class RadioHalo:
    """
    Simulate the extended radio halo emission from galaxy cluster
    experiencing on-going/recent merger.

    Description
    -----------
    1. Calculate the merger crossing time (t_cross; ~1 Gyr);
    2. Calculate the diffusion coefficient (Dpp) from the systematic
       acceleration timescale (tau_acc; ~0.1 Gyr).  The acceleration
       diffusion is assumed to have an action time ~ t_cross (i.e.,
       only during merger crossing), and then been disabled (i.e.,
       only radiation and ionization losses later);
    3. Assume the electrons are constantly injected and has a power-law
       energy spectrum, determine the injection rate by further assuming
       that the total injected electrons has energy of a fraction (eta_e)
       of the ICM total thermal energy;
    4. Set the initial electron density/spectrum be the total injected
       electrons during t_merger time;
    5. Calculate the magnetic field from the cluster total mass (which
       is assumed to be growth linearly from M_main+M_sub to M_obs);
    6. Calculate the energy losses for the coefficients of Fokker-Planck
       equation;
    7. Solve the Fokker-Planck equation to derive the relativistic
       electron spectrum at t_obs (i.e., z_obs);
    8. Calculate the synchrotron emissivity from the derived electron
       spectrum.

    Parameters
    ----------
    M_obs : float
        Cluster virial mass at the current observation (simulation end) time.
        Unit: [Msun]
    z_obs : float
        Redshift of the current observation (simulation end) time.
    M_main, M_sub : float
        The main and sub cluster masses before the (major) merger.
        Unit: [Msun]
    z_merger : float
        The redshift when the (major) merger begins.

    Attributes
    ----------
    fpsolver : `~FokkerPlanckSolver`
        The solver instance to calculate the electron spectrum evolution.
    radius : float
        The halo radius (scales with the virial radius)
        Unit: [kpc]
    """
    def __init__(self, M_obs, z_obs, M_main, M_sub, z_merger,
                 configs=CONFIGS):
        self.M_obs = M_obs
        self.z_obs = z_obs
        self.M_main = M_main
        self.M_sub = M_sub
        self.z_merger = z_merger

        self.configs = configs
        self._set_configs()
        self._set_solver()

    def _set_configs(self):
        comp = "extragalactic/halos"
        self.beta_turb = self.configs.getn(comp+"/beta_turb")
        self.eta_e = self.configs.getn(comp+"/eta_e")
        self.gamma_min = self.configs.getn(comp+"/gamma_min")
        self.gamma_max = self.configs.getn(comp+"/gamma_max")
        self.gamma_np = self.configs.getn(comp+"/gamma_np")
        self.buffer_np = self.configs.getn(comp+"/buffer_np")
        self.time_step = self.configs.getn(comp+"/time_step")
        self.injection_index = self.configs.getn(comp+"/injection_index")

    def _set_solver(self):
        self.fpsolver = FokkerPlanckSolver(
            xmin=self.gamma_min, xmax=self.gamma_max,
            x_np=self.gamma_np,
            tstep=self.time_step,
            f_advection=self.fp_advection,
            f_diffusion=self.fp_diffusion,
            f_injection=self.fp_injection,
            buffer_np=self.buffer_np,
        )

    @property
    def gamma(self):
        """
        The logarithmic grid adopted for solving the equation.
        """
        return self.fpsolver.x

    @property
    def age_obs(self):
        return COSMO.age(self.z_obs)

    @property
    def age_merger(self):
        return COSMO.age(self.z_merger)

    @property
    def time_crossing(self):
        """
        The time duration of the sub-cluster crossing the main cluster,
        which is also used to approximate the merging time, during which
        the turbulence acceleration is regarded as effective.

        Unit: [Gyr]
        """
        return helper.time_crossing(self.M_main, self.M_sub,
                                    z=self.z_merger)

    @property
    def radius(self):
        """
        The halo radius derived from the virial radius by a scaling
        relation.

        Unit: [kpc]
        """
        mass = self.M_main + self.M_sub  # [Msun]
        r_halo = helper.radius_halo(mass, self.z_merger)  # [kpc]
        return r_halo

    @property
    def angular_radius(self):
        """
        The angular radius of the radio halo.

        Unit: [arcsec]
        """
        DA = COSMO.DA(self.z_obs) * 1e3  # [Mpc] -> [kpc]
        theta = self.radius / DA  # [rad]
        return theta * AUC.rad2arcsec

    @property
    def volume(self):
        """
        The halo volume, calculated from the above radius.

        Unit: [kpc^3]
        """
        return (4*np.pi/3) * self.radius**3

    @property
    def magnetic_field(self):
        """
        The magnetic field strength at the simulated observation
        time (i.e., cluster mass of ``self.M_obs``), will be used
        to calculate the synchrotron emissions.

        Unit: [uG]
        """
        return helper.magnetic_field(self.M_obs)

    def calc_electron_spectrum(self, zbegin=None, zend=None, n0_e=None):
        """
        Calculate the relativistic electron spectrum by solving the
        Fokker-Planck equation.

        Parameters
        ----------
        zbegin : float, optional
            The redshift from where to solve the Fokker-Planck equation.
            Default: ``self.z_merger``.
        zend : float, optional
            The redshift where to stop solving the Fokker-Planck equation.
            Default: ``self.z_obs``.
        n0_e : 1D `~numpy.ndarray`, optional
            The initial electron number distribution.
            Unit: [cm^-3].
            Default: accumulated constantly injected electrons until zbegin.

        Returns
        -------
        electron_spec : float 1D `~numpy.ndarray`
            The solved electron spectrum at ``zend``.
            Unit: [cm^-3]
        """
        if zbegin is None:
            tstart = COSMO.age(self.z_merger)
        else:
            tstart = COSMO.age(zbegin)
        if zend is None:
            tstop = COSMO.age(self.z_obs)
        else:
            tstop = COSMO.age(zend)
        if n0_e is None:
            # Accumulated constantly injected electrons until ``tstart``.
            n_inj = self.fp_injection(self.gamma)
            n0_e = n_inj * tstart

        self.electron_spec = self.fpsolver.solve(u0=n0_e, tstart=tstart,
                                                 tstop=tstop)
        return self.electron_spec

    def calc_emissivity(self, frequencies, n_e=None, gamma=None):
        """
        Calculate the synchrotron emissivity for the derived electron
        spectrum.

        Parameters
        ----------
        frequencies : float, or 1D `~numpy.ndarray`
            The frequencies where to calculate the synchrotron emissivity.
            Unit: [MHz]
        n_e : 1D `~numpy.ndarray`, optional
            The electron spectrum (w.r.t. Lorentz factors γ).
            If not provided, then used the cached ``self.electron_spec``
            solved above.
            Unit: [cm^-3]
        gamma : 1D `~numpy.ndarray`, optional
            The Lorentz factors γ of the electron spectrum.
            If not provided, then used ``self.gamma``.

        Returns
        -------
        emissivity : float, or 1D `~numpy.ndarray`
            The calculated synchrotron emissivity at each specified
            frequency.
            Unit: [erg/s/cm^3/Hz]
        """
        if n_e is None:
            n_e = self.electron_spec
        if gamma is None:
            gamma = self.gamma
        syncem = SynchrotronEmission(gamma=gamma, n_e=n_e,
                                     B=self.magnetic_field)
        emissivity = syncem.emissivity(frequencies)
        return emissivity

    def calc_power(self, emissivity):
        """
        Calculate the synchrotron power (i.e., power *emitted* per
        unit frequency) from emissivity.

        NOTE
        ----
        The calculated power (a.k.a. spectral luminosity) is in units of
        [W/Hz] which is common in radio astronomy, instead of [erg/s/Hz]!
            1 [W] = 1e7 [erg/s]

        Parameters
        ----------
        emissivity : float, or 1D `~numpy.ndarray`
            The synchrotron emissivity at multiple frequencies.
            Unit: [erg/s/cm^3/Hz]

        Returns
        -------
        power : float, or 1D `~numpy.ndarray`
            The calculated synchrotron power w.r.t. each input emissivity.
            Unit: [W/Hz]
        """
        emissivity = np.asarray(emissivity)
        power = emissivity * self.volume  # [erg/s/Hz]
        power *= 1e-7  # [erg/s/Hz] -> [W/Hz]
        return power

    def calc_flux(self, emissivity):
        """
        Calculate the synchrotron flux density (i.e., power *observed*
        per unit frequency) from emissivity.

        Parameters
        ----------
        emissivity : float, or 1D `~numpy.ndarray`
            The synchrotron emissivity at multiple frequencies.
            Unit: [erg/s/cm^3/Hz]

        Returns
        -------
        flux : float, or 1D `~numpy.ndarray`
            The calculated synchrotron flux w.r.t. each input emissivity.
            Unit: [Jy] = 1e-23 [erg/s/cm^2/Hz] = 1e-26 [W/m^2/Hz]
        """
        power = self.calc_power(emissivity)  # [W/Hz]
        DL = COSMO.DL(self.z_obs) * AUC.Mpc2m  # [m]
        flux = 1e26 * power / (4*np.pi * DL*DL)  # [Jy]
        return flux

    def calc_brightness_mean(self, emissivity, frequencies, pixelsize=None):
        """
        Calculate the mean surface brightness (power observed per unit
        frequency and per unit solid angle) at the specified frequencies
        from emissivity.

        NOTE
        ----
        If the solid angle that the radio halo extends is smaller than
        the specified pixel area, then the halo is assumed to cover a
        solid angle of 1 pixel.

        Parameters
        ----------
        emissivity : float, or 1D `~numpy.ndarray`
            The synchrotron emissivity at multiple frequencies.
            Unit: [erg/s/cm^3/Hz]
        frequencies : float, or 1D `~numpy.ndarray`
            The frequencies where to calculate the synchrotron emissivity.
            Unit: [MHz]
        pixelsize : float, optional
            The pixel size of the output simulated sky image.
            Unit: [arcsec]

        Returns
        -------
        Tb : float, or 1D `~numpy.ndarray`
            The mean surface brightness at each frequency.
            Unit: [K] <-> [Jy/pixel]
        """
        omega = np.pi * self.angular_radius**2  # [arcsec^2]
        if pixelsize:
            pixelarea = pixelsize ** 2  # [arcsec^2]
            if omega < pixelarea:
                omega = pixelarea
                logger.warning("Halo sky coverage (%.2f [arcsec^2])" % omega +
                               " < pixel area (%.2f [arcsec^2])" % pixelarea)

        flux = self.calc_flux(emissivity)
        Tb = [Fnu_to_Tb_fast(Fnu, omega, freq)
              for Fnu, freq in zip(np.array(flux, ndmin=1),
                                   np.array(frequencies, ndmin=1))]
        if len(Tb) == 1:
            return Tb[0]
        else:
            return np.array(Tb)

    def fp_injection(self, gamma, t=None):
        """
        Electron injection (rate) term for the Fokker-Planck equation.

        NOTE
        ----
        The injected electrons are assumed to have a power-law spectrum
        and a constant injection rate.

        Qe(γ) = Ke * γ^(-s),
        Ke: constant injection rate

        Parameters
        ----------
        gamma : float, or float 1D `~numpy.ndarray`
            Lorentz factors of electrons
        t : None
            Currently a constant injection rate is assumed, therefore
            this parameter is not used.  Keep it for the consistency
            with other functions.

        Returns
        -------
        Qe : float, or float 1D `~numpy.ndarray`
            Current electron injection rate at specified energies (gamma).
            Unit: [cm^-3 Gyr^-1]

        References
        ----------
        Ref.[cassano2005],Eqs.(31,32,33)
        """
        Ke = self._injection_rate
        Qe = Ke * gamma**(-self.injection_index)
        return Qe

    def fp_diffusion(self, gamma, t):
        """
        Diffusion term/coefficient for the Fokker-Planck equation.

        NOTE
        ----
        The diffusion coefficients cannot be zero or negative, which
        may cause unstable or wrong results.  So constrain ``tau_acc``
        be a sufficient large but finite number.

        Parameters
        ----------
        gamma : float, or float 1D `~numpy.ndarray`
            The Lorentz factors of electrons
        t : float
            Current (cosmic) time when solving the equation
            Unit: [Gyr]

        Returns
        -------
        diffusion : float, or float 1D `~numpy.ndarray`
            Diffusion coefficients
            Unit: [Gyr^-1]

        References
        ----------
        Ref.[donnert2013],Eq.(15)
        """
        tau_acc = self._tau_acceleration(t)  # [Gyr]
        diffusion = gamma**2 / (4 * tau_acc)
        return diffusion

    def fp_advection(self, gamma, t):
        """
        Advection term/coefficient for the Fokker-Planck equation,
        which describes a systematic tendency for upward or downard
        drift of particles.

        This term is also called the "generalized cooling function"
        by [donnert2014], which includes all relevant energy loss
        functions and the energy gain function due to turbulence.

        Returns
        -------
        advection : float, or float 1D `~numpy.ndarray`
            Advection coefficients, describing the energy loss/gain rates.
            Unit: [Gyr^-1]
        """
        advection = (abs(self._loss_ion(gamma, t)) +
                     abs(self._loss_rad(gamma, t)) -
                     (self.fp_diffusion(gamma, t) * 2 / gamma))
        return advection

    def _mass(self, t):
        """
        Calculate the main cluster mass at the given (cosmic) time.

        NOTE
        ----
        We assume that the main cluster grows (i.e., gains mass) linearly
        in time from (M_main, z_merge) to (M_obs, z_obs).

        Parameters
        ----------
        t : float
            The (cosmic) time/age.
            Unit: [Gyr]

        Returns
        -------
        mass : float
            The mass of the main cluster.
            Unit: [Msun]
        """
        t_merger = self.age_merger
        rate = (self.M_obs - self.M_main) / (self.age_obs - t_merger)
        mass = rate * (t - t_merger) + self.M_main
        return mass

    def _tau_acceleration(self, t):
        """
        Calculate the systematic acceleration timescale at the
        given (cosmic) time.

        NOTE
        ----
        A reference value of the acceleration time due to TTD
        (transit-time damping) resonance is ~0.1 Gyr (Ref.[brunetti2011],
        Eq.(27) below); the formula derived by [cassano2005] (Eq.(40))
        has a dependence on ``beta_turb``.

        NOTE
        ----
        A zero diffusion coefficient may lead to unstable/wrong results,
        so constrain this acceleration timescale be finite.

        Returns
        -------
        tau : float
            The acceleration timescale.
            Unit: [Gyr]
        """
        # The reference/typical acceleration timescale
        tau_ref = 0.1  # [Gyr]
        # The maximum timescale to avoid unstable results
        tau_max = 100.0  # [Gyr]

        if t > self.age_merger + self.time_crossing:
            tau = tau_max
        else:
            tau = tau_ref / self.beta_turb
        return tau

    @property
    def _injection_rate(self):
        """
        The constant electron injection rate assumed.
        Unit: [cm^-3 Gyr^-1]

        The injection rate is parametrized by assuming that the total
        energy injected in the relativistic electrons during the cluster
        life (e.g., ``age_obs`` here) is a fraction (``self.eta_e``)
        of the total thermal energy of the cluster.

        Note that we assume that the relativistic electrons only permeate
        the halo volume (i.e., of radius ``self.radius``) instead of the
        whole cluster volume (of virial radius).

        Qe(γ) = Ke * γ^(-s),
        int[ Qe(γ) γ me c^2 ]dγ * t_cluster * V_halo =
            eta_e * e_th * V_cluster
        =>
        Ke = [(s-2) * eta_e * e_th * γ_min^(s-2) * (R_vir/R_halo)^3 /
              me / c^2 / t_cluster]

        References
        ----------
        Ref.[cassano2005],Eqs.(31,32,33)
        """
        s = self.injection_index
        R_halo = self.radius  # [kpc]
        R_vir = helper.radius_virial(self.M_obs, self.z_obs)  # [kpc]
        e_thermal = helper.density_energy_thermal(self.M_obs, self.z_obs)
        term1 = (s-2) * self.eta_e * e_thermal  # [erg cm^-3]
        term2 = self.gamma_min**(s-2) * (R_vir/R_halo)**3
        term3 = AU.mec2 * self.age_obs  # [erg Gyr]
        Ke = term1 * term2 / term3  # [cm^-3 Gyr^-1]
        return Ke

    def _loss_ion(self, gamma, t):
        """
        Energy loss through ionization and Coulomb collisions.

        Parameters
        ----------
        gamma : float, or float 1D `~numpy.ndarray`
            The Lorentz factors of electrons
        t : float
            The cosmic time/age
            Unit: [Gyr]

        Returns
        -------
        loss : float, or float 1D `~numpy.ndarray`
            The energy loss rates
            Unit: [Gyr^-1]

        References
        ----------
        Ref.[sarazin1999],Eq.(9)
        """
        z = COSMO.redshift(t)
        mass = self._mass(t)
        n_th = helper.density_number_thermal(mass, z)
        coef = -1.20e-12 * AUC.Gyr2s  # [Gyr^-1]
        loss = coef * n_th * (1 + np.log(gamma/n_th) / 75)
        return loss

    def _loss_rad(self, gamma, t):
        """
        Energy loss via synchrotron emission and inverse Compton
        scattering off the CMB photons.

        References
        ----------
        Ref.[sarazin1999],Eq.(6,7)
        """
        z = COSMO.redshift(t)
        mass = self._mass(t)
        B = helper.magnetic_field(mass)
        coef = -1.37e-20 * AUC.Gyr2s  # [Gyr^-1]
        loss = coef * gamma**2 * ((B/3.25)**2 + (1+z)**4)
        return loss