aboutsummaryrefslogtreecommitdiffstats
path: root/fg21sim/extragalactic/clusters/halo.py
blob: 2e041898278e045ce1c02a45052b4f9f15d36b87 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
# Copyright (c) 2017-2018 Weitian LI <weitian@aaronly.me>
# MIT license

"""
Simulate (giant) radio halos originating from the recent merger
events, which generate cluster-wide turbulence and accelerate the
primary (i.e., fossil) relativistic electrons to high energies to
be synchrotron-bright.  This *turbulence re-acceleration* model
is currently most widely accepted to explain the (giant) radio halos.

The simulation method is somewhat based on the statistical (Monte
Carlo) method proposed by [cassano2005]_, but with extensive
modifications and improvements.

References
----------
.. [brunetti2011]
   Brunetti & Lazarian 2011, MNRAS, 410, 127
   http://adsabs.harvard.edu/abs/2011MNRAS.410..127B

.. [cassano2005]
   Cassano & Brunetti 2005, MNRAS, 357, 1313
   http://adsabs.harvard.edu/abs/2005MNRAS.357.1313C

.. [cassano2006]
   Cassano, Brunetti & Setti, 2006, MNRAS, 369, 1577
   http://adsabs.harvard.edu/abs/2006MNRAS.369.1577C

.. [cassano2012]
   Cassano et al. 2012, A&A, 548, A100
   http://adsabs.harvard.edu/abs/2012A%26A...548A.100C

.. [donnert2013]
   Donnert 2013, AN, 334, 615
   http://adsabs.harvard.edu/abs/2013AN....334..515D

.. [donnert2014]
   Donnert & Brunetti 2014, MNRAS, 443, 3564
   http://adsabs.harvard.edu/abs/2014MNRAS.443.3564D

.. [hogg1999]
   Hogg 1999, arXiv:astro-ph/9905116
   http://adsabs.harvard.edu/abs/1999astro.ph..5116H

.. [miniati2015]
   Miniati 2015, ApJ, 800, 60
   http://adsabs.harvard.edu/abs/2015ApJ...800...60M

.. [pinzke2017]
   Pinzke, Oh & Pfrommer 2017, MNRAS, 465, 4800
   http://adsabs.harvard.edu/abs/2017MNRAS.465.4800P

.. [sarazin1999]
   Sarazin 1999, ApJ, 520, 529
   http://adsabs.harvard.edu/abs/1999ApJ...520..529S
"""

import logging
from functools import lru_cache

import numpy as np

from . import helper
from .solver import FokkerPlanckSolver
from ...share import CONFIGS, COSMO
from ...utils.units import (Units as AU,
                            UnitConversions as AUC,
                            Constants as AC)


logger = logging.getLogger(__name__)


class RadioHalo:
    """
    Simulate the diffuse (giant) radio halo emission for a galaxy
    cluster experiencing on-going/recent merger.

    Description
    -----------
    1. Calculate the turbulence persistence time (tau_turb; ~<1 Gyr);
    2. Calculate the diffusion coefficient (D_pp) from the systematic
       acceleration timescale (tau_acc; ~0.1 Gyr).  The acceleration
       diffusion is assumed to have an action time ~ tau_turb (i.e.,
       only during turbulence persistence), and then is disabled (i.e.,
       only radiation and ionization losses later);
    3. Assume the electrons are constantly injected and has a power-law
       energy spectrum, determine the injection rate by further assuming
       that the total injected electrons has energy of a fraction (eta_e)
       of the ICM total thermal energy;
    4. Set the electron density/spectrum be the accumulated electrons
       injected during t_merger time, then evolve it for time_init period
       considering only losses and constant injection, in order to derive
       an approximately steady electron spectrum for following use;
    5. Calculate the magnetic field from the cluster total mass (which
       is assumed to be growth linearly from M_main to M_obs);
    6. Calculate the energy losses for the coefficients of Fokker-Planck
       equation;
    7. Solve the Fokker-Planck equation to derive the relativistic
       electron spectrum at t_obs (i.e., z_obs);
    8. Calculate the synchrotron emissivity from the derived electron
       spectrum.

    Parameters
    ----------
    M_obs : float
        Cluster virial mass at the current observation (simulation end) time.
        Unit: [Msun]
    z_obs : float
        Redshift of the current observation (simulation end) time.
    M_main, M_sub : float
        The main and sub cluster masses before the (major) merger.
        Unit: [Msun]
    z_merger : float
        The redshift when the (major) merger begins.

    Attributes
    ----------
    fpsolver : `~FokkerPlanckSolver`
        The solver instance to calculate the electron spectrum evolution.
    radius : float
        The halo radius
        Unit: [kpc]
    gamma : 1D float `~numpy.ndarray`
        The Lorentz factors of the adopted logarithmic grid to solve the
        equation.
    electron_spec : 1D float `~numpy.ndarray`
        The derived electron (number density) distribution/spectrum at
        the final time (``zend``), which is set by the methods
        ``self.calc_electron_spectrum()`` or ``self.set_electron_spectrum()``.
        Unit: [cm^-3]
    """
    # Component name
    compID = "extragalactic/halos"
    name = "giant radio halos"

    def __init__(self, M_obs, z_obs, M_main, M_sub, z_merger,
                 configs=CONFIGS):
        self.M_obs = M_obs
        self.z_obs = z_obs
        self.age_obs = COSMO.age(z_obs)
        self.M_main = M_main
        self.M_sub = M_sub
        self.z_merger = z_merger
        self.age_merger = COSMO.age(z_merger)

        self._set_configs(configs)
        self._set_solver()

    def _set_configs(self, configs):
        comp = self.compID
        self.configs = configs
        self.f_acc = configs.getn(comp+"/f_acc")
        self.f_lturb = configs.getn(comp+"/f_lturb")
        self.zeta_ins = configs.getn(comp+"/zeta_ins")
        self.eta_turb = configs.getn(comp+"/eta_turb")
        self.eta_e = configs.getn(comp+"/eta_e")
        self.x_cr = configs.getn(comp+"/x_cr")
        self.gamma_min = configs.getn(comp+"/gamma_min")
        self.gamma_max = configs.getn(comp+"/gamma_max")
        self.gamma_np = configs.getn(comp+"/gamma_np")
        self.buffer_np = configs.getn(comp+"/buffer_np")
        if self.buffer_np == 0:
            self.buffer_np = None
        self.time_step = configs.getn(comp+"/time_step")
        self.time_init = configs.getn(comp+"/time_init")
        self.injection_index = configs.getn(comp+"/injection_index")

    def _set_solver(self):
        self.fpsolver = FokkerPlanckSolver(
            xmin=self.gamma_min, xmax=self.gamma_max,
            x_np=self.gamma_np,
            tstep=self.time_step,
            f_advection=self.fp_advection,
            f_diffusion=self.fp_diffusion,
            f_injection=self.fp_injection,
            buffer_np=self.buffer_np,
        )

    @property
    @lru_cache()
    def gamma(self):
        """
        The logarithmic grid adopted for solving the equation.
        """
        return self.fpsolver.x

    @property
    def age_begin(self):
        """
        The cosmic time when the merger begins.
        Unit: [Gyr]
        """
        return self.age_merger

    def time_turbulence(self, t=None):
        """
        The time duration the merger-induced turbulence persists, which
        is used to approximate the effective turbulence acceleration
        timescale.

        Unit: [Gyr]
        """
        t_merger = self._merger_time(t)
        mass_main = self.mass_main(t=t_merger)
        mass_sub = self.mass_sub(t=t_merger)
        z_merger = COSMO.redshift(t_merger)
        return helper.time_turbulence(mass_main, mass_sub, z=z_merger,
                                      configs=self.configs)

    def mach_turbulence(self, t=None):
        """
        The turbulence Mach number determined from its velocity dispersion.
        """
        t_merger = self._merger_time(t)
        cs = helper.speed_sound(self.kT(t_merger))  # [km/s]
        v_turb = self._velocity_turb(t_merger)  # [km/s]
        return v_turb / cs

    @property
    def radius_virial_obs(self):
        """
        The virial radius of the "current" cluster (``M_obs``) at
        ``z_obs``.

        Unit: [kpc]
        """
        return helper.radius_virial(mass=self.M_obs, z=self.z_obs)

    @property
    def radius(self):
        """
        The estimated radius for the simulated radio halo.
        Unit: [kpc]
        """
        return helper.radius_halo(self.M_obs, self.z_obs, configs=self.configs)

    @property
    def angular_radius(self):
        """
        The angular radius of the radio halo.
        Unit: [arcsec]
        """
        DA = COSMO.DA(self.z_obs) * 1e3  # [Mpc] -> [kpc]
        theta = self.radius / DA  # [rad]
        return theta * AUC.rad2arcsec

    @property
    def volume(self):
        """
        The halo volume, calculated from the above radius.
        Unit: [kpc^3]
        """
        return (4*np.pi/3) * self.radius**3

    @property
    def B_obs(self):
        """
        The magnetic field strength at the simulated observation
        time (i.e., cluster mass of ``self.M_obs``), will be used
        to calculate the synchrotron emissions.

        Unit: [uG]
        """
        return helper.magnetic_field(mass=self.M_obs, z=self.z_obs,
                                     configs=self.configs)

    @property
    def kT_obs(self):
        """
        The ICM mean temperature of the cluster at ``z_obs``.
        Unit: [keV]
        """
        return helper.kT_cluster(self.M_obs, z=self.z_obs,
                                 configs=self.configs)

    def kT(self, t=None):
        """
        The ICM mean temperature of the main cluster at cosmic time
        ``t`` (default: ``self.age_begin``).

        Unit: [keV]
        """
        if t is None:
            t = self.age_begin
        mass = self.mass_main(t)
        z = COSMO.redshift(t)
        return helper.kT_cluster(mass=mass, z=z, configs=self.configs)

    def tau_acceleration(self, t):
        """
        Calculate the electron acceleration timescale due to turbulent
        waves, which describes the turbulent acceleration efficiency.
        The turbulent acceleration timescale has order of ~0.1 Gyr.

        Here we consider the turbulence cascade mode through scattering
        in the high-β ICM mediated by plasma instabilities (firehose,
        mirror) rather than Coulomb scattering.  Therefore, the fast modes
        damp by TTD (transit time damping) on relativistic rather than
        thermal particles, and the diffusion coefficient is given by:
            D_pp = (2*p^2 * ζ / x_cr) * k_L * <v_turb^2>^2 / c_s^3
        where:
            ζ: efficiency factor for the effectiveness of plasma instabilities
            x_cr: relative energy density of cosmic rays
            k_L = 2π/L: turbulence injection scale
            v_turb: turbulence velocity dispersion
            c_s: sound speed
        Thus the acceleration timescale is:
            τ_acc = p^2 / (4*D_pp)
                  = (x_cr * c_s^3 * L) / (16π * ζ * <v_turb^2>^2)

        WARNING
        -------
        Current test shows that a very large acceleration timescale (e.g.,
        1000 or even larger) will cause problems (maybe due to some
        limitations within the current calculation scheme), for example,
        the energy losses don't seem to have effect in such cases, so the
        derived initial electron spectrum is almost the same as the raw
        input one, and the emissivity at medium/high frequencies even
        decreases when the turbulence acceleration begins!
        By carrying out some tests, the value of 10 [Gyr] is adopted for
        the maximum acceleration timescale.

        Parameters
        ----------
        t : float, optional
            The cosmic time when to determine the acceleration timescale.
            Unit: [Gyr]

        Returns
        -------
        tau : float
            The acceleration timescale at the requested time.
            Return ``np.inf`` if no active turbulence at that time.
            Unit: [Gyr]

        References
        ----------
        * Ref.[pinzke2017],Eq.(37)
        * Ref.[miniati2015],Eq.(29)
        """
        # Maximum acceleration timescale when no turbulence acceleration
        # NOTE: see the above WARNING!
        tau_max = 10.0  # [Gyr]
        if not self._is_turb_active(t):
            return tau_max

        t_merger = self._merger_time(t)
        z_merger = COSMO.redshift(t_merger)
        mass_main = self.mass_main(t_merger)
        R_vir = helper.radius_virial(mass=mass_main, z=z_merger)
        L = self.f_lturb * R_vir  # [kpc]
        cs = helper.speed_sound(self.kT(t_merger))  # [km/s]
        v_turb = self._velocity_turb(t_merger)  # [km/s]
        tau = (self.x_cr * cs**3 * L /
               (16*np.pi * self.zeta_ins * v_turb**4))  # [s kpc/km]
        tau *= AUC.s2Gyr * AUC.kpc2km  # [Gyr]
        tau *= self.f_acc  # custom tune parameter

        # Impose the maximum acceleration timescale
        if tau > tau_max:
            tau = tau_max
        return tau

    @property
    @lru_cache()
    def injection_rate(self):
        """
        The constant electron injection rate assumed.
        Unit: [cm^-3 Gyr^-1]

        The injection rate is parametrized by assuming that the total
        energy injected in the relativistic electrons during the cluster
        life (e.g., ``age_obs`` here) is a fraction (``self.eta_e``)
        of the total thermal energy of the cluster.

        The electrons are assumed to be injected throughout the cluster
        ICM/volume, i.e., do not restricted inside the halo volume.

        Qe(γ) = Ke * γ^(-s),
        int[ Qe(γ) γ me c^2 ]dγ * t_cluster = η_e * e_th
        =>
        Ke = [(s-2) * η_e * e_th * γ_min^(s-2) / (me * c^2 * t_cluster)]

        References
        ----------
        Ref.[cassano2005],Eqs.(31,32,33)
        """
        s = self.injection_index
        e_th = helper.density_energy_thermal(self.M_obs, self.z_obs,
                                             configs=self.configs)
        term1 = (s-2) * self.eta_e * e_th  # [erg cm^-3]
        term2 = self.gamma_min**(s-2)
        term3 = AU.mec2 * self.age_obs  # [erg Gyr]
        Ke = term1 * term2 / term3  # [cm^-3 Gyr^-1]
        return Ke

    @property
    def electron_spec_init(self):
        """
        The electron spectrum at ``age_begin`` to be used as the initial
        condition for the Fokker-Planck equation.

        This initial electron spectrum is derived from the accumulated
        electron spectrum injected throughout the ``age_begin`` period,
        by solving the same Fokker-Planck equation, but only considering
        energy losses and constant injection, evolving for a period of
        ``time_init`` in order to obtain an approximately steady electron
        spectrum.

        Units: [cm^-3]
        """
        # Accumulated electrons constantly injected until ``age_begin``
        n_inj = self.fp_injection(self.gamma)
        n0_e = n_inj * (self.age_begin - self.time_init)

        logger.debug("Derive the initial electron spectrum ...")
        # NOTE: subtract ``time_step`` to avoid the acceleration at the
        #       last step at ``age_begin``.
        dt = self.time_step
        tstart = self.age_begin - self.time_init - dt
        tstop = self.age_begin - dt
        # Use a bigger time step to save time
        self.fpsolver.tstep = 3 * dt
        n_e = self.fpsolver.solve(u0=n0_e, tstart=tstart, tstop=tstop)
        # Restore the original time step
        self.fpsolver.tstep = dt
        return n_e

    def calc_electron_spectrum(self, tstart=None, tstop=None, n0_e=None):
        """
        Calculate the relativistic electron spectrum by solving the
        Fokker-Planck equation.

        Parameters
        ----------
        tstart : float, optional
            The (cosmic) time from when to solve the Fokker-Planck equation
            for relativistic electrons evolution.
            Default: ``self.age_begin``.
            Unit: [Gyr]
        tstop : float, optional
            The (cosmic) time when to derive final relativistic electrons
            spectrum for synchrotron emission calculations.
            Default: ``self.age_obs``.
            Unit: [Gyr]
        n0_e : 1D `~numpy.ndarray`, optional
            The initial electron spectrum (number distribution).
            Default: ``self.electron_spec_init``
            Unit: [cm^-3]

        Returns
        -------
        electron_spec : float 1D `~numpy.ndarray`
            The solved electron spectrum at ``tstop``.
            Unit: [cm^-3]
        """
        if tstart is None:
            tstart = self.age_begin
        if tstop is None:
            tstop = self.age_obs
        if n0_e is None:
            n0_e = self.electron_spec_init

        # When the evolution time is too short, decrease the time step
        # to improve the results.
        # XXX: is this necessary???
        nstep_min = 20
        if (tstop - tstart) / self.time_step < nstep_min:
            tstep = (tstop - tstart) / nstep_min
            logger.debug("Decreased time step: %g -> %g [Gyr]" %
                         (self.time_step, self.fpsolver.tstep))
            self.fpsolver.tstep = tstep

        self.electron_spec = self.fpsolver.solve(u0=n0_e, tstart=tstart,
                                                 tstop=tstop)
        return self.electron_spec

    def set_electron_spectrum(self, n_e):
        """
        Check the given electron spectrum and set it to the
        ``self.electron_spec``.

        Parameters
        ----------
        n_e : float 1D `~numpy.ndarray`
            The solved electron spectrum at ``zend``.
            Unit: [cm^-3]
        """
        n_e = np.array(n_e)  # make a copy
        if n_e.shape == self.gamma.shape:
            self.electron_spec = n_e
        else:
            raise ValueError("given electron spectrum has wrong shape!")

    def fp_injection(self, gamma, t=None):
        """
        Electron injection (rate) term for the Fokker-Planck equation.

        NOTE
        ----
        The injected electrons are assumed to have a power-law spectrum
        and a constant injection rate.

        Qe(γ) = Ke * γ^(-s),
        Ke: constant injection rate

        Parameters
        ----------
        gamma : float, or float 1D `~numpy.ndarray`
            Lorentz factors of electrons
        t : None
            Currently a constant injection rate is assumed, therefore
            this parameter is not used.  Keep it for the consistency
            with other functions.

        Returns
        -------
        Qe : float, or float 1D `~numpy.ndarray`
            Current electron injection rate at specified energies (gamma).
            Unit: [cm^-3 Gyr^-1]

        References
        ----------
        Ref.[cassano2005],Eqs.(31,32,33)
        """
        Ke = self.injection_rate  # [cm^-3 Gyr^-1]
        Qe = Ke * gamma**(-self.injection_index)
        return Qe

    def fp_diffusion(self, gamma, t):
        """
        Diffusion term/coefficient for the Fokker-Planck equation.

        The diffusion is directly related to the electron acceleration
        which is described by the ``tau_acc`` acceleration timescale
        parameter.

        WARNING
        -------
        A zero diffusion coefficient may lead to unstable/wrong results,
        since it is not properly taken care of by the solver.

        Parameters
        ----------
        gamma : float, or float 1D `~numpy.ndarray`
            The Lorentz factors of electrons
        t : float
            Current (cosmic) time when solving the equation
            Unit: [Gyr]

        Returns
        -------
        diffusion : float, or float 1D `~numpy.ndarray`
            Diffusion coefficients
            Unit: [Gyr^-1]

        References
        ----------
        Ref.[donnert2013],Eq.(15)
        """
        tau_acc = self.tau_acceleration(t)
        gamma = np.asarray(gamma)
        diffusion = gamma**2 / 4 / tau_acc
        return diffusion

    def fp_advection(self, gamma, t):
        """
        Advection term/coefficient for the Fokker-Planck equation,
        which describes a systematic tendency for upward or downward
        drift of particles.

        This term is also called the "generalized cooling function"
        by [donnert2014], which includes all relevant energy loss
        functions and the energy gain function due to turbulence.

        Returns
        -------
        advection : float, or float 1D `~numpy.ndarray`
            Advection coefficients, describing the energy loss/gain rates.
            Unit: [Gyr^-1]
        """
        if t < self.age_begin:
            # To derive the initial electron spectrum
            advection = abs(self._energy_loss(gamma, self.age_begin))
        else:
            # Turbulence acceleration and beyond
            advection = (abs(self._energy_loss(gamma, t)) -
                         (self.fp_diffusion(gamma, t) * 2 / gamma))
        return advection

    def _merger_time(self, t=None):
        """
        The (cosmic) time when the merger begins.
        Unit: [Gyr]
        """
        return self.age_merger

    def mass_merged(self, t=None):
        """
        The mass of the merged cluster.
        Unit: [Msun]
        """
        return self.M_main + self.M_sub

    def mass_sub(self, t=None):
        """
        The mass of the sub cluster.
        Unit: [Msun]
        """
        return self.M_sub

    def mass_main(self, t):
        """
        Calculate the main cluster mass at the given (cosmic) time.

        NOTE
        ----
        Since we currently only consider the last major merger event,
        there may be a long time between ``z_merger`` and ``z_obs``.
        So we assume that the main cluster grows linearly in time from
        (M_main, z_merger) to (M_obs, z_obs).

        Parameters
        ----------
        t : float
            The (cosmic) time/age.
            Unit: [Gyr]

        Returns
        -------
        mass : float
            The mass of the main cluster.
            Unit: [Msun]
        """
        t0 = self.age_begin
        rate = (self.M_obs - self.M_main) / (self.age_obs - t0)
        mass = rate * (t - t0) + self.M_main
        return mass

    def magnetic_field(self, t):
        """
        Calculate the mean magnetic field strength of the main cluster mass
        at the given (cosmic) time.

        Returns
        -------
        B : float
            The mean magnetic field strength of the main cluster.
            Unit: [uG]
        """
        z = COSMO.redshift(t)
        mass = self.mass_main(t)  # [Msun]
        B = helper.magnetic_field(mass=mass, z=z, configs=self.configs)
        return B

    def _velocity_turb(self, t):
        """
        Calculate the turbulence velocity dispersion (i.e., turbulence
        Mach number).

        NOTE
        ----
        During the merger, a fraction of the merger kinetic energy is
        transferred into the turbulence within the assumed regions
        (radius <= L, the injection scale).  Then estimate the turbulence
        velocity dispersion from its energy.

        Merger energy:
            E_m ≅ 0.5 * f_gas * M_sub * v_vir^2
            v_vir = sqrt(G*M_main / R_vir)
        Turbulence energy:
            E_turb ≅ η_turb * E_m
                   ≅ 0.5 * M_turb * <v_turb^2>
                   = 0.5 * f_gas * M_total(<L) * <v_turb^2>
                   = 0.5 * f_gas * f_mass(L/R_vir) * M_total * <v_turb^2>
            M_total = M_main + M_sub
        => Velocity dispersion:
            <v_turb^2> ≅ (η_turb/f_mass) * (M_sub/M_total) * v_vir^2

        Returns
        -------
        v_turb : float
            The turbulence velocity dispersion
            Unit: [km/s]
        """
        z = COSMO.redshift(t)
        mass_merged = self.mass_merged(t)
        mass_main = self.mass_main(t)
        mass_sub = self.mass_sub(t)
        R_vir = helper.radius_virial(mass_merged, z) * AUC.kpc2cm  # [cm]
        v2_vir = (AC.G * mass_main*AUC.Msun2g / R_vir) * AUC.cm2km**2
        fmass = helper.fmass_nfw(self.f_lturb)
        v2_turb = v2_vir * (self.eta_turb / fmass) * (mass_sub / mass_merged)
        return np.sqrt(v2_turb)

    def _is_turb_active(self, t):
        """
        Is the turbulence acceleration is active at the given (cosmic) time?

        NOTE
        ----
        Considering that the turbulence acceleration is a 2nd-order Fermi
        process, it has only an effective acceleration time ~<1 Gyr.
        Therefore, only during the period that strong turbulence persists
        in the ICM that the turbulence could effectively accelerate the
        relativistic electrons.
        """
        if t < self.age_begin:
            return False
        t_merger = self._merger_time(t)
        t_turb = self.time_turbulence(t_merger)
        if (t >= t_merger) and (t <= t_merger + t_turb):
            return True
        else:
            return False

    def _energy_loss(self, gamma, t):
        """
        Energy loss mechanisms:
        * inverse Compton scattering off the CMB photons
        * synchrotron radiation
        * Coulomb collisions

        Reference: Ref.[sarazin1999],Eq.(6,7,9)

        Parameters
        ----------
        gamma : float, or float 1D `~numpy.ndarray`
            The Lorentz factors of electrons
        t : float
            The cosmic time/age
            Unit: [Gyr]

        Returns
        -------
        loss : float, or float 1D `~numpy.ndarray`
            The energy loss rates
            Unit: [Gyr^-1]
        """
        gamma = np.asarray(gamma)
        z = COSMO.redshift(t)
        B = self.magnetic_field(t)  # [uG]
        mass = self.mass_main(t)
        n_th = helper.density_number_thermal(mass, z)  # [cm^-3]
        loss_ic = -4.32e-4 * gamma**2 * (1+z)**4
        loss_syn = -4.10e-5 * gamma**2 * B**2
        loss_coul = -3.79e4 * n_th * (1 + np.log(gamma/n_th) / 75)
        return loss_ic + loss_syn + loss_coul


class RadioHaloAM(RadioHalo):
    """
    Simulate the diffuse (giant) radio halo for a galaxy cluster
    with all its on-going/recent merger events taken into account,
    while the above ``RadioHalo`` class only considers the most
    recent major/maximum merger event that is specified.

    Parameters
    ----------
    M_obs : float
        Cluster virial mass at the observation (simulation end) time.
        Unit: [Msun]
    z_obs : float
        Redshift of the observation (simulation end) time.
    M_main, M_sub : list[float]
        List of main and sub cluster masses at each merger event,
        from current to earlier time.
        Unit: [Msun]
    z_merger : list[float]
        The redshifts at each merger event, from small to large.
    merger_num : int
        Number of merger events traced for the cluster.
    """
    def __init__(self, M_obs, z_obs, M_main, M_sub, z_merger,
                 merger_num, configs=CONFIGS):
        self.merger_num = merger_num
        M_main = np.asarray(M_main[:merger_num])
        M_sub = np.asarray(M_sub[:merger_num])
        z_merger = np.asarray(z_merger[:merger_num])
        super().__init__(M_obs=M_obs, z_obs=z_obs,
                         M_main=M_main, M_sub=M_sub,
                         z_merger=z_merger, configs=configs)

    @property
    def age_begin(self):
        """
        The cosmic time when the merger begins, i.e., the earliest merger.
        Unit: [Gyr]
        """
        return self.age_merger[-1]

    def _merger_idx(self, t):
        """
        Determine the index of the merger event within which the given
        time is located, i.e.:
            age_merger[idx-1] >= t > age_merger[idx]
        """
        return (self.age_merger > t).sum()

    def _merger_time(self, t):
        """
        Determine the beginning time of the merger event within which
        the given time is located.
        """
        try:
            idx = self._merger_idx(t)
            return self.age_merger[idx]
        except IndexError:
            return None

    def _merger(self, idx):
        """
        Return the properties of the idx-th merger event.
        """
        return {
            "M_main": self.M_main[idx],
            "M_sub": self.M_sub[idx],
            "z": self.z_merger[idx],
            "age": self.age_merger[idx],
        }

    def mass_merged(self, t):
        """
        The mass of merged cluster at the given (cosmic) time.
        Unit: [Msun]
        """
        if t >= self.age_obs:
            return self.M_obs
        else:
            idx = self._merger_idx(t)
            merger = self._merger(idx)
            return (merger["M_main"] + merger["M_sub"])

    def mass_sub(self, t):
        """
        The mass of the sub cluster at the given (cosmic) time.
        Unit: [Msun]
        """
        idx = self._merger_idx(t)
        merger = self._merger(idx)
        return merger["M_sub"]

    def mass_main(self, t):
        """
        Calculate the main cluster mass at the given (cosmic) time.

        Parameters
        ----------
        t : float
            The (cosmic) time/age.
            Unit: [Gyr]

        Returns
        -------
        mass : float
            The mass of the main cluster.
            Unit: [Msun]
        """
        idx = self._merger_idx(t)
        merger1 = self._merger(idx)
        mass1 = merger1["M_main"]
        t1 = merger1["age"]
        if idx == 0:
            mass0 = self.M_obs
            t0 = self.age_obs
        else:
            merger0 = self._merger(idx-1)
            mass0 = merger0["M_main"]
            t0 = merger0["age"]
        rate = (mass0 - mass1) / (t0 - t1)
        return (mass1 + rate * (t - t1))

    @property
    def time_turbulence_avg(self):
        """
        Calculate the time-averaged turbulence acceleration active time
        within the period from ``age_begin`` to ``age_obs``.

        Unit: [Gyr]
        """
        dt = self.time_step
        xt = np.arange(self.age_begin, self.age_obs+dt/2, step=dt)
        t_turb = np.array([self.time_turbulence(t) for t in xt])
        avg = np.sum(t_turb * dt) / (len(xt) * dt)
        return avg

    @property
    def mach_turbulence_avg(self):
        """
        Calculate the time-averaged turbulence Mach number within the
        period from ``age_begin`` to ``age_obs``.
        """
        dt = self.time_step
        xt = np.arange(self.age_begin, self.age_obs+dt/2, step=dt)
        mach = np.array([self.mach_turbulence(t) for t in xt])
        avg = np.sum(mach * dt) / (len(xt) * dt)
        return avg

    @property
    def tau_acceleration_avg(self):
        """
        Calculate the time-averaged turbulence acceleration timescale
        (i.e., efficiency) within the period from ``age_begin`` to
        ``age_obs``.

        Unit: [Gyr]
        """
        dt = self.time_step
        xt = np.arange(self.age_begin, self.age_obs+dt/2, step=dt)
        tau = np.array([self.tau_acceleration(t) for t in xt])
        avg = np.sum(tau * dt) / (len(xt) * dt)
        return avg

    @property
    def time_acceleration_fraction(self):
        """
        Calculate the fraction of time within the period from
        ``age_begin`` to ``age_obs`` that the turbulence acceleration
        is active.
        """
        dt = self.time_step
        xt = np.arange(self.age_begin, self.age_obs+dt/2, step=dt)
        active = np.array([self._is_turb_active(t) for t in xt], dtype=int)
        fraction = active.mean()
        return fraction