1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
|
# Copyright (c) 2017 Weitian LI <weitian@aaronly.me>
# MIT license
"""
Simulate (giant) radio halo originating from the last/ most recent
cluster-cluster major merger event, following the "statistical
magneto-turbulent model" proposed by [cassano2005]_, but with many
modifications and simplifications.
References
----------
.. [brunetti2011]
Brunetti & Lazarian 2011, MNRAS, 410, 127
http://adsabs.harvard.edu/abs/2011MNRAS.410..127B
.. [cassano2005]
Cassano & Brunetti 2005, MNRAS, 357, 1313
http://adsabs.harvard.edu/abs/2005MNRAS.357.1313C
.. [cassano2006]
Cassano, Brunetti & Setti, 2006, MNRAS, 369, 1577
http://adsabs.harvard.edu/abs/2006MNRAS.369.1577C
.. [cassano2012]
Cassano et al. 2012, A&A, 548, A100
http://adsabs.harvard.edu/abs/2012A%26A...548A.100C
.. [donnert2013]
Donnert 2013, AN, 334, 615
http://adsabs.harvard.edu/abs/2013AN....334..515D
.. [donnert2014]
Donnert & Brunetti 2014, MNRAS, 443, 3564
http://adsabs.harvard.edu/abs/2014MNRAS.443.3564D
.. [sarazin1999]
Sarazin 1999, ApJ, 520, 529
http://adsabs.harvard.edu/abs/1999ApJ...520..529S
"""
import logging
import numpy as np
from . import helper
from .solver import FokkerPlanckSolver
from ...utils import cosmo
from ...utils.units import (Units as AU,
UnitConversions as AUC,
Constants as AC)
logger = logging.getLogger(__name__)
class RadioHalo:
"""
Simulate the extended radio halo emission from galaxy cluster
experiencing on-going/recent merger.
Description
-----------
1. Calculate the merger crossing time (t_cross; ~1 Gyr);
2. Calculate the diffusion coefficient (Dpp) from the systematic
acceleration timescale (tau_acc; ~0.1 Gyr). The acceleration
diffusion is assumed to have an action time ~ t_cross (i.e.,
only during merger crossing), and then been disabled (i.e.,
only radiation and ionization losses later);
3. Assume the electrons are constantly injected and has a power-law
energy spectrum;
4. Determine the initial electron density
after that, calculate the electron acceleration and time evolution
by solving the Fokker-Planck equation; and finally derive the radio
emission from the electron spectra.
Parameters
----------
M_obs : float
Cluster virial mass at the current observation (simulation end) time.
Unit: [Msun]
z_obs : float
Redshift of the current observation (simulation end) time.
M_main, M_sub : float
The main and sub cluster masses before the (major) merger.
Unit: [Msun]
z_merger : float
The redshift when the (major) merger begins.
tau_merger : float
The timescale of the merger-induced disturbance.
Unit: [Gyr]
...
"""
def __init__(self, M_obs, z_obs,
M_main, M_sub, z_merger, tau_merger,
eta_turb, eta_e, gamma_min, gamma_max, gamma_np,
buffer_np, time_step, injection_rate, injection_index):
self.M_obs = M_obs
self.z_obs = z_obs
self.M_main = M_main
self.M_sub = M_sub
self.z_merger = z_merger
self.eta_turb = eta_turb
self.eta_e = eta_e
self.gamma_min = gamma_min
self.gamma_max = gamma_max
self.gamma_np = gamma_np
self.buffer_np = buffer_np
self.time_step = time_step
self.injection_rate = injection_rate
self.injection_index = injection_index
@property
def age_obs(self):
return cosmo.age(self.z_obs)
@property
def age_merger(self):
return cosmo.age(self.z_merger)
@property
def time_crossing(self):
return helper.time_crossing(self.M_main, self.M_sub,
z=self.z_merger)
@property
def radius(self):
"""
The halo radius derived from the virial radius by a scaling
relation.
Unit: [kpc]
"""
mass = self.M_main + self.M_sub # [Msun]
r_halo = helper.radius_halo(mass, self.z_merger) # [kpc]
return r_halo
def calc_electron_spectrum(self, zbegin=None, zend=None, n0_e=None):
"""
Calculate the relativistic electron spectrum by solving the
Fokker-Planck equation.
Parameters
----------
zbegin : float, optional
The redshift from where to solve the Fokker-Planck equation.
Default: ``self.z_merger``.
zend : float, optional
The redshift where to stop solving the Fokker-Planck equation.
Default: ``self.z_obs``.
n0_e : 1D `~numpy.ndarray`, optional
The initial electron number distribution.
Unit: [cm^-3].
Default: accumulated constantly injected electrons until zbegin.
Returns
-------
gamma : `~numpy.ndarray`
The Lorentz factor grid adopted for solving the equation.
n_e : `~numpy.ndarray`
The solved electron spectrum at ``zend``.
Unit: [cm^-3]
"""
if zbegin is None:
tstart = cosmo.age(self.zmax)
else:
tstart = cosmo.age(zbegin)
if zend is None:
tstop = cosmo.age(self.z0)
else:
tstop = cosmo.age(zend)
fpsolver = FokkerPlanckSolver(
xmin=self.gamma_min, xmax=self.gamma_max,
x_np=self.gamma_np,
tstep=self.time_step,
f_advection=self.fp_advection,
f_diffusion=self.fp_diffusion,
f_injection=self.fp_injection,
buffer_np=self.buffer_np,
)
gamma = fpsolver.x
if n0_e is None:
# Accumulated constantly injected electrons until ``tstart``.
n_inj = np.array([self.fp_injection(gm)
for gm in self.gamma])
n0_e = n_inj * tstart
n_e = fpsolver.solve(u0=n0_e, tstart=tstart, tstop=tstop)
return (gamma, n_e)
def _z_end(self, z_begin, time):
"""
Calculate the ending redshift from ``z_begin`` after elapsing
``time``.
Parameters
----------
z_begin : float
Beginning redshift
time : float
Elapsing time (unit: Gyr)
"""
t_begin = cosmo.age(z_begin) # [Gyr]
t_end = t_begin + time
if t_end >= cosmo.age(0):
z_end = 0.0
else:
z_end = cosmo.redshift(t_end)
return z_end
def fp_injection(self, gamma, t=None):
"""
Electron injection (rate) term for the Fokker-Planck equation.
NOTE
----
The injected electrons are assumed to have a power-law spectrum
and a constant injection rate.
Qe(γ) = Ke * γ^(-s),
Ke: constant injection rate
Parameters
----------
gamma : float
Lorentz factor of electrons
t : None
Currently a constant injection rate is assumed, therefore
this parameter is not used. Keep it for the consistency
with other functions.
Returns
-------
Qe : float
Current electron injection rate at specified energy (gamma).
Unit: [cm^-3 Gyr^-1]
References
----------
Ref.[cassano2005],Eqs.(31,32,33)
"""
Ke = self._injection_rate
Qe = Ke * gamma**(-self.injection_index)
return Qe
def fp_diffusion(self, gamma, t):
"""
Diffusion term/coefficient for the Fokker-Planck equation.
Parameters
----------
gamma : float
The Lorentz factor of electrons
t : float
Current (cosmic) time when solving the equation
Unit: [Gyr]
Returns
-------
diffusion : float
Diffusion coefficient
Unit: [Gyr^-1]
References
----------
Ref.[donnert2013],Eq.(15)
"""
tau_acc = self._tau_acceleration(t) # [Gyr]
diffusion = gamma**2 / (4 * tau_acc)
return diffusion
def fp_advection(self, gamma, t):
"""
Advection term/coefficient for the Fokker-Planck equation,
which describes a systematic tendency for upward or downard
drift of particles.
This term is also called the "generalized cooling function"
by [donnert2014], which includes all relevant energy loss
functions and the energy gain function due to turbulence.
Returns
-------
advection : float
Advection coefficient, describing the energy loss/gain rate.
Unit: [Gyr^-1]
"""
advection = (abs(self._loss_ion(gamma, t)) +
abs(self._loss_rad(gamma, t)) -
(self.fp_diffusion(gamma, t) * 2 / gamma))
return advection
def _mass(self, t):
"""
Calculate the main cluster mass at the given (cosmic) time.
NOTE
----
We assume that the main cluster grows (i.e., gains mass) linearly
in time from (M_main, z_merge) to (M_obs, z_obs).
Parameters
----------
t : float
The (cosmic) time/age.
Unit: [Gyr]
Returns
-------
mass : float
The mass of the main cluster.
Unit: [Msun]
"""
t_merger = self.age_merger
rate = (self.M_obs - self.M_main) / (self.age_obs - t_merger)
mass = rate * (t - t_merger) + self.M_main
return mass
def _tau_acceleration(self, t):
"""
Calculate the systematic acceleration timescale at the
given (cosmic) time.
NOTE
----
A reference value of the acceleration time due to TTD
(transit-time damping) resonance is ~0.1 Gyr (Ref.[brunetti2011],
Eq.(27) below); the formula derived by [cassano2005] (Eq.(40))
has a dependence on eta_turb.
Returns
-------
tau : float
The acceleration timescale.
Unit: [Gyr]
"""
# The reference/typical acceleration timescale
tau_ref = 0.1 # [Gyr]
if t > self.age_merger + self.time_crossing:
tau = np.inf
else:
tau = tau_ref / self.eta_turb
return tau
@property
def _injection_rate(self):
"""
The constant electron injection rate assumed.
Unit: [cm^-3 Gyr^-1]
The injection rate is parametrized by assuming that the total
energy injected in the relativistic electrons during the cluster
life (e.g., ``age_obs`` here) is a fraction (``self.eta_e``)
of the total thermal energy of the cluster.
Note that we assume that the relativistic electrons only permeate
the halo volume (i.e., of radius ``self.radius``) instead of the
whole cluster volume (of virial radius).
Qe(γ) = Ke * γ^(-s),
int[ Qe(γ) γ me c^2 ]dγ * t_cluster * V_halo =
eta_e * e_th * V_cluster
=>
Ke = [(s-2) * eta_e * e_th * γ_min^(s-2) * (R_vir/R_halo)^3 /
me / c^2 / t_cluster]
References
----------
Ref.[cassano2005],Eqs.(31,32,33)
"""
s = self.injection_index
R_halo = self.radius # [kpc]
R_vir = helper.radius_virial(self.M_obs, self.z_obs) # [kpc]
e_thermal = helper.density_energy_thermal(self.M_obs, self.z_obs)
term1 = (s-2) * self.eta_e * e_thermal # [erg cm^-3]
term2 = self.gamma_min**(s-2) * (R_vir/R_halo)**3
term3 = AU.mec2 * self.age_obs # [erg Gyr]
Ke = term1 * term2 / term3 # [cm^-3 Gyr^-1]
return Ke
def _loss_ion(self, gamma, t):
"""
Energy loss through ionization and Coulomb collisions.
Parameters
----------
gamma : float
The Lorentz factor of electrons
t : float
The cosmic time/age
Unit: [Gyr]
Returns
-------
loss : float
The energy loss rate
Unit: [Gyr^-1]
References
----------
Ref.[sarazin1999],Eq.(9)
"""
z = cosmo.redshift(t)
mass = self._mass(t)
n_th = helper.density_number_thermal(mass, z)
coef = -1.20e-12 * AUC.Gyr2s # [Gyr^-1]
loss = coef * n_th * (1 + np.log(gamma/n_th) / 75)
return loss
def _loss_rad(self, gamma, t):
"""
Energy loss via synchrotron emission and inverse Compton
scattering off the CMB photons.
References
----------
Ref.[sarazin1999],Eq.(6,7)
"""
z = cosmo.redshift(t)
coef = -1.37e-20 * AUC.Gyr2s # [Gyr^-1]
loss = (coef * gamma**2 *
((self.magnetic_field/3.25)**2 + (1+z)**4))
return loss
|