1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
|
# Copyright (c) 2017 Weitian LI <weitian@aaronly.me>
# MIT license
"""
Helper functions
References
----------
.. [cassano2007]
Cassano et al. 2007, MNRAS, 378, 1565;
http://adsabs.harvard.edu/abs/2007MNRAS.378.1565C
.. [arnaud2005]
Arnaud, Pointecouteau & Pratt 2005, A&A, 441, 893;
http://adsabs.harvard.edu/abs/2005A%26A...441..893
"""
import numpy as np
from ...utils import cosmo
from ...utils.units import (Constants as AC,
UnitConversions as AUC)
def radius_virial(mass, z=0.0):
"""
Calculate the virial radius of a cluster at a given redshift.
Parameters
----------
mass : float
Total (virial) mass of the cluster
Unit: [Msun]
z : float, optional
Redshift
Default: 0.0 (i.e., present day)
Returns
-------
R_vir : float
Virial radius of the cluster
Unit: [kpc]
"""
Dc = cosmo.overdensity_virial(z)
rho = cosmo.rho_crit(z) # [g/cm^3]
R_vir = (3*mass*AUC.Msun2g / (4*np.pi * Dc * rho))**(1/3) # [cm]
R_vir *= AUC.cm2kpc # [kpc]
return R_vir
def radius_halo(mass, z=0.0):
"""
Calculate the radius of (giant) radio halo for a cluster.
The halo radius is derived from the virial radius using the scaling
relation in [cassano2007]_.
Parameters
----------
mass : float
Total (virial) mass of the cluster
Unit: [Msun]
z : float, optional
Redshift
Default: 0.0 (i.e., present day)
Returns
-------
R_halo : float
Radius of the (expected) giant radio halo
Unit: [kpc]
References
----------
Ref.[cassano2007],Fig.(11)
"""
slope = 2.63 + np.random.normal(scale=0.5)
intercept = 2.3 + np.random.normal(scale=0.05)
R_vir = radius_virial(mass=mass, z=z) # [kpc]
R_halo = 10 ** (slope * np.log10(R_vir) + intercept)
return R_halo
def mass_to_kT(mass, z=0.0):
"""
Calculate the cluster ICM temperature from its mass using the
mass-temperature scaling relation (its inversion used here)
derived from observations.
The following M-T scaling relation from Ref.[arnaud2005],Tab.2:
M200 * E(z) = A200 * (kT / 5 keV)^α ,
where:
A200 = (5.34 +/- 0.22) [1e14 Msun]
α = (1.72 +/- 0.10)
Its inversion:
kT = (5 keV) * [M200 * E(z) / A200]^(1/α).
NOTE: M200 (i.e., Δ=200) is used to approximate the virial mass.
Parameters
----------
mass : float
Total (virial) mass of the cluster.
Unit: [Msun]
z : float, optional
Redshift of the cluster
Returns
-------
kT : float
The ICM mean temperature.
Unit: [keV]
"""
A = 5.34 + np.random.normal(scale=0.22)
alpha = 1.72 + np.random.normal(scale=0.10)
Ez = cosmo.E(z)
kT = 5.0 * (mass * Ez / A) ** (1/alpha)
return kT
def density_number_thermal(mass, z=0.0):
"""
Calculate the number density of the ICM thermal plasma.
Parameters
----------
mass : float
Mass of the cluster
Unit: [Msun]
z : float, optional
Redshift
Returns
-------
n_th : float
Number density of the ICM thermal plasma
Unit: [cm^-3]
"""
N = mass * AUC.Msun2g * cosmo.baryon_fraction / (AC.mu * AC.u)
R_vir = radius_virial(mass, z) * AUC.kpc2cm # [cm]
volume = (4*np.pi / 3) * R_vir**3 # [cm^3]
n_th = N / volume # [cm^-3]
return n_th
def density_energy_thermal(mass, z=0.0):
"""
Calculate the thermal energy density of the ICM.
Returns
-------
e_th : float
Energy density of the ICM (unit: erg/cm^3)
"""
n_th = density_number_thermal(mass, z) # [cm^-3]
kT = mass_to_kT(mass, z) * AUC.keV2erg # [erg]
e_th = (3.0/2) * kT * n_th
return e_th
|