1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
|
# Copyright (c) 2017 Weitian LI <weitian@aaronly.me>
# MIT license
"""
Helper functions
References
----------
.. [arnaud2005]
Arnaud, Pointecouteau & Pratt 2005, A&A, 441, 893;
http://adsabs.harvard.edu/abs/2005A%26A...441..893
.. [cassano2005]
Cassano & Brunetti 2005, MNRAS, 357, 1313
http://adsabs.harvard.edu/abs/2005MNRAS.357.1313C
.. [cassano2007]
Cassano et al. 2007, MNRAS, 378, 1565;
http://adsabs.harvard.edu/abs/2007MNRAS.378.1565C
.. [cassano2012]
Cassano et al. 2012, A&A, 548, A100
http://adsabs.harvard.edu/abs/2012A%26A...548A.100C
.. [murgia2009]
Murgia et al. 2009, A&A, 499, 679
http://adsabs.harvard.edu/abs/2009A%26A...499..679M
.. [zandanel2014]
Zandanel, Pfrommer & Prada 2014, MNRAS, 438, 124
http://adsabs.harvard.edu/abs/2014MNRAS.438..124Z
"""
import logging
import numpy as np
from scipy import integrate
from ...share import CONFIGS, COSMO
from ...utils.units import (Units as AU,
Constants as AC,
UnitConversions as AUC)
from ...utils.convert import Fnu_to_Tb
from ...utils.draw import circle
from ...utils.transform import circle2ellipse
logger = logging.getLogger(__name__)
def radius_virial(mass, z=0.0):
"""
Calculate the virial radius of a cluster at a given redshift.
Parameters
----------
mass : float
Total (virial) mass of the cluster
Unit: [Msun]
z : float, optional
Redshift
Default: 0.0 (i.e., present day)
Returns
-------
R_vir : float
Virial radius of the cluster
Unit: [kpc]
"""
Dc = COSMO.overdensity_virial(z)
rho = COSMO.rho_crit(z) # [g/cm^3]
R_vir = (3*mass*AUC.Msun2g / (4*np.pi * Dc * rho))**(1/3) # [cm]
R_vir *= AUC.cm2kpc # [kpc]
return R_vir
def radius_halo(mass, z=0.0):
"""
Calculate the radius of (giant) radio halo for a cluster.
The halo radius is assumed to linearly scale with the virial radius,
and is estimated by:
R_halo = R_vir / 4
* halo radius is ~3-6 times smaller than the virial radius;
Ref.[cassano2007],Sec.(1)
* halo half radius is ~R500/4, therefore, R_halo ~ R_vir/4;
Ref.[zandanel2014],Sec.(6.2)
Parameters
----------
mass : float
Total (virial) mass of the cluster
Unit: [Msun]
z : float, optional
Redshift
Default: 0.0 (i.e., present day)
Returns
-------
R_halo : float
Radius of the (expected) giant radio halo
Unit: [kpc]
"""
R_vir = radius_virial(mass=mass, z=z) # [kpc]
R_halo = R_vir / 4.0 # [kpc]
return R_halo
def mass_to_kT(mass, z=0.0):
"""
Calculate the cluster ICM temperature from its mass using the
mass-temperature scaling relation (its inversion used here)
derived from observations.
The following M-T scaling relation from Ref.[arnaud2005],Tab.2:
M200 * E(z) = A200 * (kT / 5 keV)^α ,
where:
A200 = (5.34 +/- 0.22) [1e14 Msun]
α = (1.72 +/- 0.10)
Its inversion:
kT = (5 keV) * [M200 * E(z) / A200]^(1/α).
NOTE: M200 (i.e., Δ=200) is used to approximate the virial mass.
Parameters
----------
mass : float
Total (virial) mass of the cluster.
Unit: [Msun]
z : float, optional
Redshift of the cluster
Returns
-------
kT : float
The ICM mean temperature.
Unit: [keV]
"""
# A = (5.34 + np.random.normal(scale=0.22)) * 1e14 # [Msun]
A = 5.34 * 1e14 # [Msun]
# alpha = 1.72 + np.random.normal(scale=0.10)
alpha = 1.72
Ez = COSMO.E(z)
kT = 5.0 * (mass * Ez / A) ** (1/alpha)
return kT
def density_number_thermal(mass, z=0.0):
"""
Calculate the number density of the ICM thermal plasma.
NOTE
----
This number density is independent of cluster (virial) mass,
but (mostly) increases with redshifts.
Parameters
----------
mass : float
Mass of the cluster
Unit: [Msun]
z : float, optional
Redshift
Returns
-------
n_th : float
Number density of the ICM thermal plasma
Unit: [cm^-3]
"""
N = mass * AUC.Msun2g * COSMO.baryon_fraction / (AC.mu * AC.u)
R_vir = radius_virial(mass, z) * AUC.kpc2cm # [cm]
volume = (4*np.pi / 3) * R_vir**3 # [cm^3]
n_th = N / volume # [cm^-3]
return n_th
def density_energy_thermal(mass, z=0.0):
"""
Calculate the thermal energy density of the ICM.
Returns
-------
e_th : float
Energy density of the ICM
Unit: [erg cm^-3]
"""
n_th = density_number_thermal(mass, z) # [cm^-3]
kT = mass_to_kT(mass, z) * AUC.keV2erg # [erg]
e_th = (3.0/2) * kT * n_th
return e_th
def density_energy_electron(spectrum, gamma):
"""
Calculate the energy density of relativistic electrons.
Parameters
----------
spectrum : 1D float `~numpy.ndarray`
The number density of the electrons w.r.t. Lorentz factors
Unit: [cm^-3]
gamma : 1D float `~numpy.ndarray`
The Lorentz factors of electrons
Returns
-------
e_re : float
The energy density of the relativistic electrons.
Unit: [erg cm^-3]
"""
e_re = integrate.trapz(spectrum*gamma*AU.mec2, gamma)
return e_re
def velocity_impact(M_main, M_sub, z=0.0):
"""
Estimate the relative impact velocity between the two merging
clusters when they are at a distance of the virial radius.
Parameters
----------
M_main, M_sub : float
Total (virial) masses of the main and sub clusters
Unit: [Msun]
z : float, optional
Redshift
Returns
-------
vi : float
Relative impact velocity
Unit: [km/s]
References
----------
Ref.[cassano2005],Eq.(9)
"""
eta_v = 4 * (1 + M_main/M_sub) ** (1/3)
R_vir = radius_virial(M_main, z) * AUC.kpc2cm # [cm]
vi = np.sqrt(2*AC.G * (1-1/eta_v) *
(M_main+M_sub)*AUC.Msun2g / R_vir) # [cm/s]
vi /= AUC.km2cm # [km/s]
return vi
def time_crossing(M_main, M_sub, z=0.0):
"""
Estimate the crossing time of the sub cluster during a merger.
NOTE: The crossing time is estimated to be τ ~ R_vir / v_impact.
Parameters
----------
M_main, M_sub : float
Total (virial) masses of the main and sub clusters
Unit: [Msun]
z : float, optional
Redshift
Returns
-------
time : float
Crossing time
Unit: [Gyr]
References
----------
Ref.[cassano2005],Sec.(4.1)
"""
R_vir = radius_virial(M_main, z) # [kpc]
vi = velocity_impact(M_main, M_sub, z) # [km/s]
# Unit conversion coefficient: [s kpc/km] => [Gyr]
uconv = AUC.kpc2km * AUC.s2Gyr
time = uconv * R_vir / vi # [Gyr]
return time
def magnetic_field(mass):
"""
Calculate the mean magnetic field strength according to the
scaling relation between magnetic field and cluster mass.
Parameters
----------
mass : float
Cluster mass
Unit: [Msun]
Returns
-------
B : float
The mean magnetic field strength
Unit: [uG]
References
----------
Ref.[cassano2012],Eq.(1)
"""
comp = "extragalactic/clusters"
b_mean = CONFIGS.getn(comp+"/b_mean")
b_index = CONFIGS.getn(comp+"/b_index")
M_mean = 1.6e15 # [Msun]
B = b_mean * (mass/M_mean) ** b_index
return B
def calc_power(emissivity, volume):
"""
Calculate the synchrotron power (i.e., power *emitted* per unit
frequency) from emissivity, which assumed to be uniform within
the volume.
NOTE
----
The calculated power (a.k.a. spectral luminosity) is in units of
[W/Hz] which is common in radio astronomy, instead of [erg/s/Hz].
1 [W] = 1e7 [erg/s]
Parameters
----------
emissivity : float, or 1D `~numpy.ndarray`
The synchrotron emissivity at multiple frequencies.
Unit: [erg/s/cm^3/Hz]
volume : float
The volume of the radio halo
Unit: [kpc^3]
Returns
-------
power : float, or 1D `~numpy.ndarray`
The calculated synchrotron power w.r.t. each input emissivity.
Unit: [W/Hz]
"""
emissivity = np.asarray(emissivity)
power = emissivity * (volume * AUC.kpc2cm**3) # [erg/s/Hz]
power *= 1e-7 # [erg/s/Hz] -> [W/Hz]
return power
def calc_flux(power, z):
"""
Calculate the synchrotron flux density (i.e., power *observed*
per unit frequency) from radio power at a certain redshift (i.e.,
distance).
Parameters
----------
power : float, or 1D `~numpy.ndarray`
The synchrotron power at multiple frequencies.
Unit: [W/Hz]
Returns
-------
flux : float, or 1D `~numpy.ndarray`
The calculated synchrotron flux w.r.t. each input power.
Unit: [Jy] = 1e-23 [erg/s/cm^2/Hz] = 1e-26 [W/m^2/Hz]
"""
DL = COSMO.DL(z) * AUC.Mpc2m # [m]
flux = 1e26 * power / (4*np.pi * DL*DL) # [Jy]
return flux
def calc_brightness_mean(flux, frequency, omega, pixelsize=None):
"""
Calculate the mean surface brightness (power observed per unit
frequency and per unit solid angle) expressed in *brightness
temperature* at the specified frequencies from flux.
NOTE
----
If the solid angle that the object extends is smaller than the
specified pixel area, then is is assumed to have size of 1 pixel.
Parameters
----------
flux : float, or 1D `~numpy.ndarray`
The synchrotron flux densities at multiple frequencies.
Unit: [Jy]
frequency : float, or 1D `~numpy.ndarray`
The frequencies where the above flux calculated.
Unit: [MHz]
omega : float
The sky coverage (angular size) of the object.
Unit: [arcsec^2]
pixelsize : float, optional
The pixel size of the output simulated sky image.
Unit: [arcsec]
Returns
-------
Tb : float, or 1D `~numpy.ndarray`
The mean surface brightness at each frequency.
Unit: [K] <-> [Jy/pixel]
"""
if pixelsize and (omega < pixelsize**2):
omega = pixelsize ** 2 # [arcsec^2]
logger.warning("Object sky coverage < 1 pixel; force to be 1 pixel")
Tb = [Fnu_to_Tb(Fnu, omega, freq)
for Fnu, freq in zip(np.array(flux, ndmin=1),
np.array(frequency, ndmin=1))]
if len(Tb) == 1:
return Tb[0]
else:
return np.array(Tb)
def halo_rprofile(re, num_re=5, I0=1.0):
"""
Generate the radial profile of a halo.
NOTE
----
The exponential radial profile is adopted for the radio halos:
I(r) = I0 * exp(-r/re)
with the e-folding radius ``re ~ R_halo / 3``.
Parameters
----------
re : float
The e-folding radius in unit of pixels.
num_re : float, optional
The times of ``re`` to determine the maximum radius.
Default: 5, i.e., rmax = 5 * re
I0 : float
The intensity/brightness at the center (i.e., r=0)
Default: 1.0
Returns
-------
rprofile : 1D `~numpy.ndarray`
The values along the radial pixels (0, 1, 2, ...)
References: Ref.[murgia2009],Eq.(1)
"""
rmax = round(re * num_re)
r = np.arange(rmax+1)
rprofile = I0 * np.exp(-r/re)
return rprofile
def draw_halo(rprofile, felong, rotation=0.0):
"""
Draw the template image of one halo, which is used to simulate
the image at requested frequencies by adjusting the brightness
values.
Parameters
----------
rprofile : 1D `~numpy.ndarray`
The values along the radial pixels (0, 1, 2, ...),
e.g., calculated by the above ``halo_rprofile()``.
felong : float
The elongated fraction of the elliptical halo, which is
defined as the ratio of semi-minor axis to the semi-major axis.
rotation : float
The rotation angle of the elliptical halo.
Unit: [deg]
Returns
-------
image : 2D `~numpy.ndarray`
2D array of the drawn halo template image.
The image is normalized to have *mean* value of 1.
"""
image = circle(rprofile=rprofile)
image = circle2ellipse(image, bfraction=felong, rotation=rotation)
image /= image.mean()
return image
|