aboutsummaryrefslogtreecommitdiffstats
path: root/fg21sim/extragalactic/clusters/main.py
blob: bc5326c17b3e0f893963f6a2d69fc1e692ca7ada (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
# Copyright (c) 2017-2018 Weitian LI <weitian@aaronly.me>
# MIT license

"""
Simulate the diffuse radio emissions from galaxy clusters due to
merger-induced turbulence and/or shock accelerations, e.g.,
(giant) radio halos, (elongated double) radio relics.

NOTE
----
There are other types of diffuse radio emissions not considered
yet, e.g., mini-halos, roundish radio relics.
"""

import os
import logging
from collections import OrderedDict

import numpy as np

from .psformalism import PSFormalism
from .formation import ClusterFormation
from .halo import RadioHalo
from ...share import CONFIGS, COSMO
from ...utils.io import dataframe_to_csv, pickle_dump, pickle_load
from ...utils.ds import dictlist_to_dataframe
from ...utils.convert import JyPerPix_to_K
from ...sky import get_sky
from . import helper


logger = logging.getLogger(__name__)


class GalaxyClusters:
    """
    Simulate the diffuse radio emissions from the galaxy clusters.

    NOTE
    ----
    Currently only implement the *giant radio halos*, while other types
    of diffuse emissions are missing, e.g., mini-halos, elongated relics,
    roundish relics.

    Attributes
    ----------
    configs : `~ConfigManager`
        A `ConfigManager` instance containing default and user configurations.
        For more details, see the example configuration specifications.
    halo_configs : dict
        A dictionary containing the configurations for halo simulation.
    sky : `~SkyBase`
        The sky instance to deal with the simulation sky as well as the
        output map.
        XXX: current full-sky HEALPix map is NOT supported!
    """
    # Component name
    compID = "extragalactic/clusters"
    name = "galaxy clusters (halos)"

    def __init__(self, configs=CONFIGS):
        self.configs = configs
        self._set_configs()

        self.sky = get_sky(configs)
        self.sky.add_header("CompID", self.compID, "Emission component ID")
        self.sky.add_header("CompName", self.name, "Emission component")
        self.sky.add_header("BUNIT", "K", "[Kelvin] Data unit")
        self.sky.creator = __name__

    def _set_configs(self):
        """
        Load the configs and set the corresponding class attributes.
        """
        comp = self.compID
        self.catalog_outfile = self.configs.get_path(comp+"/catalog_outfile")
        self.dump_catalog_data = self.configs.getn(comp+"/dump_catalog_data")
        self.use_dump_catalog_data = self.configs.getn(
            comp+"/use_dump_catalog_data")
        self.halos_catalog_outfile = self.configs.get_path(
            comp+"/halos_catalog_outfile")
        self.dump_halos_data = self.configs.getn(comp+"/dump_halos_data")
        self.use_dump_halos_data = self.configs.getn(
            comp+"/use_dump_halos_data")
        self.halo_dropout = self.configs.getn(comp+"/halo_dropout")
        self.prefix = self.configs.getn(comp+"/prefix")
        self.output_dir = self.configs.get_path(comp+"/output_dir")
        self.merger_mass_min = self.configs.getn(comp+"/merger_mass_min")
        self.time_traceback = self.configs.getn(comp+"/time_traceback")
        self.frequencies = self.configs.frequencies
        self.filename_pattern = self.configs.getn("output/filename_pattern")
        self.clobber = self.configs.getn("output/clobber")
        logger.info("Loaded and set up configurations")

        if self.use_dump_halos_data and (not self.use_dump_catalog_data):
            self.use_dump_catalog_data = True
            logger.warning("Forced to use existing cluster catalog, "
                           "due to 'use_dump_halos_data=True'")

    def _simulate_catalog(self):
        """
        Simulate the (z, mass) catalog of the cluster distribution
        according to the Press-Schechter formalism.

        Catalog Items
        -------------
        z : redshifts
        mass : [Msun] cluster total mass

        Attributes
        ----------
        catalog : list[dict]
        comments : list[str]
        """
        logger.info("Simulating the clusters (z, mass) catalog ...")
        psform = PSFormalism(configs=self.configs)
        psform.calc_dndlnm()
        psform.write()
        counts = psform.calc_cluster_counts(coverage=self.sky.area)
        z, mass, self.comments = psform.sample_z_m(counts)
        self.catalog = []
        for z_, m_ in zip(z, mass):
            self.catalog.append(OrderedDict([("z", z_), ("mass", m_)]))
        logger.info("Simulated a catalog of %d clusters" % counts)

    def _process_catalog(self):
        """
        Do some basic processes to the catalog:

        * Generate random positions within the sky for each cluster;
        * Generate random elongated fraction;
        * Generate random rotation angle.

        Catalog Items
        -------------
        lon : [deg] longitudes
        lat : [deg] latitudes
        felong : elongated fraction, defined as the ratio of
                 elliptical semi-major axis to semi-minor axis
        rotation : [deg] rotation angle; uniformly distributed within
                   [0, 360.0)

        NOTE
        ----
        felong (elongated fraction) ::
            Adopt a definition (felong = b/a) similar to the Hubble
            classification for the elliptical galaxies.  Considering that
            radio halos are generally regular, ``felong`` is thus restricted
            within [0.6, 1.0], and sampled from a cut and absolute normal
            distribution centered at 1.0 with sigma ~0.4/3 (<= 3σ).
        """
        logger.info("Preliminary processes to the catalog ...")
        num = len(self.catalog)
        lon, lat = self.sky.random_points(n=num)
        felong_min = 0.6
        sigma = (1.0 - felong_min) / 3.0
        felong = 1.0 - np.abs(np.random.normal(scale=sigma, size=num))
        felong[felong < felong_min] = felong_min
        rotation = np.random.uniform(low=0.0, high=360.0, size=num)

        for i, cdict in enumerate(self.catalog):
            cdict.update([
                ("lon", lon[i]),
                ("lat", lat[i]),
                ("felong", felong[i]),
                ("rotation", rotation[i]),
            ])
        self.comments += [
            "lon, lat - [deg] longitudes and latitudes",
            "felong - elongated fraction (= b/a)",
            "rotation -  [deg] ellipse rotation angle",
        ]
        logger.info("Added catalog items: lon, lat, felong, rotation.")

    def _simulate_mergers(self):
        """
        Simulate the formation history of each cluster to build their
        merger histories.

        Catalog Items
        -------------
        merger_num : number of merger events within the traced period
        merger_mass1, merger_mass2 :
            [Msun] masses of the main and sub clusters of each merger.
        merger_z, merger_age : redshifts and cosmic ages [Gyr]
            of each merger event.
        """
        logger.info("Simulating merger histories for each cluster ...")
        num = len(self.catalog)
        num_hasmerger = 0
        for i, cdict in enumerate(self.catalog):
            ii = i + 1
            if ii % 100 == 0:
                logger.info("[%d/%d] %.1f%% ..." % (ii, num, 100*ii/num))
            z0, M0 = cdict["z"], cdict["mass"]
            age0 = COSMO.age(z0)
            zmax = COSMO.redshift(age0 - self.time_traceback)
            clform = ClusterFormation(M0=M0, z0=z0, zmax=zmax,
                                      merger_mass_min=self.merger_mass_min)
            clform.simulate_mtree(main_only=True)
            mergers = clform.mergers()
            if mergers:
                num_hasmerger += 1
                cdict.update([
                    ("merger_num",   len(mergers)),
                    ("merger_mass1", [ev["M_main"] for ev in mergers]),
                    ("merger_mass2", [ev["M_sub"] for ev in mergers]),
                    ("merger_z",     [ev["z"] for ev in mergers]),
                    ("merger_age",   [ev["age"] for ev in mergers]),
                ])
            else:
                cdict.update([
                    ("merger_num",   0),
                    ("merger_mass1", []),
                    ("merger_mass2", []),
                    ("merger_z",     []),
                    ("merger_age",   []),
                ])

        self.comments += [
            "merger_num - number of merger events",
            "merger_mass1 - [Msun] main cluster mass of each merger",
            "merger_mass2 - [Msun] sub cluster mass of each merger",
            "merger_z - redshift of each merger",
            "merger_age - [Gyr] cosmic age at each merger",
        ]
        logger.info("%d (%.1f%%) clusters experienced recent mergers." %
                    (num_hasmerger, 100*num_hasmerger/num))
        nmax = max([cdict["merger_num"] for cdict in self.catalog])
        logger.info("Maximum number of merger events: %d" % nmax)

    def _simulate_halos(self):
        """
        Simulate the radio halo properties for each cluster with recent
        merger event.

        Attributes
        ----------
        halos : list[dict]
            Simulated data for each cluster with recent merger.
        """
        # Select out the clusters with recent mergers
        idx_rmm = [idx for idx, cdict in enumerate(self.catalog)
                   if cdict["rmm_z"] is not None]
        num = len(idx_rmm)
        logger.info("Simulating halos for %d merging clusters ..." % num)
        self.halos = []
        for i, idx in enumerate(idx_rmm):
            ii = i + 1
            if ii % 50 == 0:
                logger.info("[%d/%d] %.1f%% ..." % (ii, num, 100*ii/num))
            cdict = self.catalog[idx]
            z_obs = cdict["z"]
            M_obs = cdict["mass"]
            z_merger = cdict["rmm_z"]
            M_main = cdict["rmm_mass1"]
            M_sub = cdict["rmm_mass2"]
            logger.info("[%d/%d] " % (ii, num) +
                        "M1[%.2e] & M2[%.2e] @ z[%.3f] -> M[%.2e] @ z[%.3f]" %
                        (M_main, M_sub, z_merger, M_obs, z_obs))
            halo = RadioHalo(M_obs=M_obs, z_obs=z_obs,
                             M_main=M_main, M_sub=M_sub,
                             z_merger=z_merger, configs=self.configs)
            n_e = halo.calc_electron_spectrum()
            data = OrderedDict([
                ("z0", halo.z_obs),
                ("M0", halo.M_obs),  # [Msun]
                ("Rvir0", halo.radius_virial_obs),  # [kpc]
                ("kT0", halo.kT_obs),  # [keV]
                ("B0", halo.B_obs),  # [uG] magnetic field at z_obs
                ("lon", cdict["lon"]),  # [deg] longitude
                ("lat", cdict["lat"]),  # [deg] longitude
                ("felong", cdict["felong"]),  # Fraction of elongation
                ("rotation", cdict["rotation"]),  # [deg] rotation angle
                ("M_main", halo.M_main),  # [Msun]
                ("M_sub", halo.M_sub),  # [Msun]
                ("z_merger", halo.z_merger),
                ("kT_main", halo.kT_main),  # [keV] main cluster kT at z_merger
                ("kT_sub", halo.kT_sub),  # [keV] sub-cluster kT at z_merger
                ("Rvir_main", halo.radius_virial_main),  # [kpc] at z_merger
                ("Rvir_sub", halo.radius_virial_sub),  # [kpc] at z_merger
                ("tback_merger", halo.tback_merger),  # [Gyr]
                ("time_turbulence", halo.time_turbulence),  # [Gyr]
                ("Rhalo", halo.radius),  # [kpc]
                ("Rhalo_angular", halo.angular_radius),  # [arcsec]
                ("volume", halo.volume),  # [kpc^3]
                ("Mach_turb", halo.mach_turbulence),  # turbulence Mach number
                ("tau_acc", halo.tau_acceleration),  # [Gyr]
                ("Ke", halo.injection_rate),  # [cm^-3 Gyr^-1]
                ("gamma", halo.gamma),  # Lorentz factors
                ("n_e", n_e),  # [cm^-3]
            ])
            self.halos.append(data)
        logger.info("Simulated radio halos for merging cluster.")

    def _calc_halos_emission(self):
        """
        Calculate the radio emissions at configured frequencies.
        """
        logger.info("Calculating the radio halo emissions ...")
        num = len(self.halos)
        i = 0
        for hdict in self.halos:
            i += 1
            if i % 100 == 0:
                logger.info("[%d/%d] %.1f%% ..." % (i, num, 100*i/num))

            halo = RadioHalo(M_obs=hdict["M0"], z_obs=hdict["z0"],
                             M_main=hdict["M_main"], M_sub=hdict["M_sub"],
                             z_merger=hdict["z_merger"],
                             configs=self.configs)
            halo.set_electron_spectrum(hdict["n_e"])

            emissivity = halo.calc_emissivity(frequencies=self.frequencies)
            power = halo.calc_power(self.frequencies, emissivity=emissivity)
            # k-correction considered
            flux = halo.calc_flux(self.frequencies)
            Tb_mean = halo.calc_brightness_mean(self.frequencies, flux=flux,
                                                pixelsize=self.sky.pixelsize)
            # Update or add new items
            hdict.update([
                ("frequency", self.frequencies),  # [MHz]
                ("emissivity", emissivity),  # [erg/s/cm^3/Hz]
                ("power", power),  # [W/Hz]
                ("flux", flux),  # [Jy]
                ("Tb_mean", Tb_mean),  # [K]
            ])
        logger.info("Done calculate the radio emissions.")

    def _dropout_halos(self):
        """
        Considering that the (very) massive galaxy clusters are very rare,
        while the simulation sky area is rather small, therefore, once a
        very massive cluster appears, its associated radio halo is also
        very powerful and (almost) dominate other intermediate/faint halos,
        causing the simulation results unstable and have large variation.

        Drop out the specified number of most powerful radio halos from
        the catalog, in order to obtain a more stable simulation.
        """
        if (self.halo_dropout <= 0) or self.use_dump_halos_data:
            logger.info("No need to drop out halos.")
            return

        power = np.array([hdict["power"][0] for hdict in self.halos])
        argsort = power.argsort()[::-1]  # max -> min
        idx_drop = argsort[:self.halo_dropout]
        halos_new = [hdict for i, hdict in enumerate(self.halos)
                     if i not in idx_drop]
        self.halos = halos_new
        logger.info("Dropped out %d most powerful halos" % self.halo_dropout)
        logger.info("Remaining number of halos: %d" % len(halos_new))

    def _draw_halos(self):
        """
        Draw the template images for each halo, and cache them for
        simulating the superimposed halos at requested frequencies.

        NOTE
        ----
        The drawn template images are append to the dictionaries of
        the corresponding halo within the ``self.halos``.
        The templates are normalized to have *mean* value of 1.
        """
        num = len(self.halos)
        logger.info("Draw template images for %d halos ..." % num)
        i = 0
        for hdict in self.halos:
            i += 1
            if i % 100 == 0:
                logger.info("[%d/%d] %.1f%% ..." % (i, num, 100*i/num))
            theta_e = hdict["Rhalo_angular"] / self.sky.pixelsize
            template = helper.draw_halo(radius=theta_e,
                                        felong=hdict["felong"],
                                        rotation=hdict["rotation"])
            hdict["template"] = template
        logger.info("Done drawn halo template images.")

    def _save_catalog_data(self, outfile=None, dump=None, clobber=None):
        """
        Save the simulated cluster catalog (``self.catalog``) by converting
        it into a Pandas DataFrame and writing into a CSV file.

        If ``dump=True``, then the raw data (``self.catalog``) is dumped
        into a Python pickle file, making it easier to be loaded back
        for reuse.
        """
        if outfile is None:
            outfile = self.catalog_outfile
        if dump is None:
            dump = self.dump_catalog_data
        if clobber is None:
            clobber = self.clobber

        if self.use_dump_catalog_data and os.path.exists(outfile):
            os.rename(outfile, outfile+".old")

        logger.info("Converting cluster catalog into a Pandas DataFrame ...")
        # Pad the merger events to be same length
        nmax = max([cdict["merger_num"] for cdict in self.catalog])
        for cdict in self.catalog:
            num = cdict["merger_num"]
            cdict.update([
                ("merger_mass1", cdict["merger_mass1"] + [None]*(nmax-num)),
                ("merger_mass2", cdict["merger_mass2"] + [None]*(nmax-num)),
                ("merger_z",     cdict["merger_z"] + [None]*(nmax-num)),
                ("merger_age",   cdict["merger_age"] + [None]*(nmax-num)),
            ])

        keys = list(self.catalog[0].keys())
        catalog_df = dictlist_to_dataframe(self.catalog, keys=keys)
        dataframe_to_csv(catalog_df, outfile=outfile,
                         comment=self.comments, clobber=clobber)
        logger.info("Saved cluster catalog to CSV file: %s" % outfile)

        if dump:
            outfile = os.path.splitext(outfile)[0] + ".pkl"
            if self.use_dump_catalog_data and os.path.exists(outfile):
                os.rename(outfile, outfile+".old")
            pickle_dump([self.catalog, self.comments],
                        outfile=outfile, clobber=clobber)
            logger.info("Dumped catalog raw data to file: %s" % outfile)

    def _save_halos_data(self, outfile=None, dump=None, clobber=None):
        """
        Save the simulated halo data (``self.halos``) by converting it
        into a Pandas DataFrame and writing into a CSV file.

        If ``dump=True``, then the raw data (``self.halos``) is dumped
        into a Python pickle file, making it possible to be loaded back
        to quickly calculate the emissions at additional frequencies.
        """
        if outfile is None:
            outfile = self.halos_catalog_outfile
        if dump is None:
            dump = self.dump_halos_data
        if clobber is None:
            clobber = self.clobber

        if self.use_dump_halos_data and os.path.exists(outfile):
            os.rename(outfile, outfile+".old")

        logger.info("Converting halos data into a Pandas DataFrame ...")
        keys = list(self.halos[0].keys())
        # Ignore these items: gamma, n_e, template
        for k in ["gamma", "n_e", "template"]:
            keys.remove(k)
        halos_df = dictlist_to_dataframe(self.halos, keys=keys)
        dataframe_to_csv(halos_df, outfile, clobber=clobber)
        logger.info("Saved halos data to CSV file: %s" % outfile)

        if dump:
            outfile = os.path.splitext(outfile)[0] + ".pkl"
            if self.use_dump_halos_data and os.path.exists(outfile):
                os.rename(outfile, outfile+".old")
            pickle_dump(self.halos, outfile=outfile, clobber=clobber)
            logger.info("Dumped halos raw data to file: %s" % outfile)

    def _outfilepath(self, frequency, **kwargs):
        """
        Generate the path/filename to the output file for writing
        the simulate sky images.

        Parameters
        ----------
        frequency : float
            The frequency of the output sky image.
            Unit: [MHz]

        Returns
        -------
        filepath : str
            The generated filepath for the output sky file.
        """
        filename = self.filename_pattern.format(
            prefix=self.prefix, frequency=frequency, **kwargs)
        filepath = os.path.join(self.output_dir, filename)
        return filepath

    def preprocess(self):
        """
        Perform the preparation procedures for the later simulations.

        Attributes
        ----------
        _preprocessed : bool
            This attribute presents and is ``True`` after the preparation
            procedures have been done.
        """
        if hasattr(self, "_preprocessed") and self._preprocessed:
            return

        logger.info("{name}: preprocessing ...".format(name=self.name))
        if self.use_dump_catalog_data:
            infile = os.path.splitext(self.catalog_outfile)[0] + ".pkl"
            logger.info("Use existing cluster catalog: %s" % infile)
            self.catalog, self.comments = pickle_load(infile)
            logger.info("Loaded cluster catalog of %d clusters" %
                        len(self.catalog))
        else:
            self._simulate_catalog()
            self._process_catalog()
            self._simulate_mergers()

        if self.use_dump_halos_data:
            infile = os.path.splitext(self.halos_catalog_outfile)[0] + ".pkl"
            logger.info("Use existing halos data: %s" % infile)
            self.halos = pickle_load(infile)
            logger.info("Loaded data of %d halos" % len(self.halos))
        else:
            self._simulate_halos()

        self._calc_halos_emission()
        self._dropout_halos()
        self._draw_halos()

        self._preprocessed = True

    def simulate_frequency(self, freqidx):
        """
        Simulate the superimposed radio halos image at frequency (by
        frequency index) based on the above simulated halo templates.

        Parameters
        ----------
        freqidx : int
            The index of the frequency in the ``self.frequencies`` where
            to simulate the radio halos image.

        Returns
        -------
        sky : `~SkyBase`
            The simulated sky image of radio halos as a new sky instance.
        """
        freq = self.frequencies[freqidx]
        logger.info("Simulating radio halo map at %.2f [MHz] ..." % freq)
        sky = self.sky.copy()
        sky.frequency = freq
        # Conversion factor for [Jy/pixel] to [K]
        JyPP2K = JyPerPix_to_K(freq, sky.pixelsize)

        for hdict in self.halos:
            center = (hdict["lon"], hdict["lat"])
            template = hdict["template"]  # normalized to have mean of 1
            Npix = template.size
            flux = hdict["flux"][freqidx]  # [Jy]
            Tmean = (flux/Npix) * JyPP2K  # [K]
            Timg = Tmean * template  # [K]
            sky.add(Timg, center=center)

        logger.info("Done simulate map at %.2f [MHz]." % freq)
        return sky

    def simulate(self):
        """
        Simulate the sky images of radio halos at each frequency.

        Returns
        -------
        skyfiles : list[str]
            List of the filepath to the written sky files
        """
        logger.info("Simulating {name} ...".format(name=self.name))
        skyfiles = []
        for idx, freq in enumerate(self.frequencies):
            sky = self.simulate_frequency(freqidx=idx)
            outfile = self._outfilepath(frequency=freq)
            sky.write(outfile)
            skyfiles.append(outfile)
        logger.info("Done simulate {name}!".format(name=self.name))
        return skyfiles

    def postprocess(self):
        """
        Do some necessary post-simulation operations.
        """
        logger.info("{name}: postprocessing ...".format(name=self.name))
        # Save the final resulting clusters catalog
        logger.info("Save the cluster catalog ...")
        self._save_catalog_data()
        logger.info("Saving the simulated halos catalog and raw data ...")
        self._save_halos_data()