1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
|
# Copyright (c) 2017 Weitian LI <weitian@aaronly.me>
# MIT license
"""
Simulate the extended radio emissions from the galaxy cluster,
e.g., giant radio halos, radio relics.
NOTE
----
There are other types of extended radio emissions not considered
yet, e.g., mini-halos, roundish radio relics, etc.
References
----------
.. [cassano2012]
Cassano et al. 2012, A&A, 548, A100
http://adsabs.harvard.edu/abs/2012A%26A...548A.100C
"""
import os
import logging
import numpy as np
import pandas as pd
from .psformalism import PSFormalism
from .formation import ClusterFormation
from .halo import RadioHalo
from ...share import CONFIGS, COSMO
from ...utils.io import dataframe_to_csv, pickle_dump
from ...utils.ds import dictlist_to_dataframe
from ...sky import get_sky
from . import helper
logger = logging.getLogger(__name__)
class GalaxyClusters:
"""
Simulate the extended radio emissions from the galaxy clusters.
NOTE
----
Currently, only the *giant radio halos* are considered, while
other types of extended emissions are missing, e.g., mini-halos,
elongated relics, roundish relics.
Attributes
----------
configs : `~ConfigManager`
A `ConfigManager` instance containing default and user configurations.
For more details, see the example configuration specifications.
halo_configs : dict
A dictionary containing the configurations for halo simulation.
sky : `~SkyPatch` or `SkyHealpix`
The sky instance to deal with the simulation sky as well as the
output map.
XXX: current full-sky HEALPix map is NOT supported!
"""
# Component name
name = "galaxy clusters (halos)"
def __init__(self, configs=CONFIGS):
self.configs = configs
self._set_configs()
self.sky = get_sky(configs)
self.sky.add_header("CompName", self.name, "Emission component")
self.sky.add_header("BUNIT", "K", "Data in units of [Kelvin]")
self.sky.creator = __name__
def _set_configs(self):
"""
Load the configs and set the corresponding class attributes.
"""
comp = "extragalactic/clusters"
self.catalog_outfile = self.configs.get_path(comp+"/catalog_outfile")
self.halos_dumpfile = self.configs.get_path(comp+"/halos_dumpfile")
self.prefix = self.configs.getn(comp+"/prefix")
self.save = self.configs.getn(comp+"/save")
self.output_dir = self.configs.get_path(comp+"/output_dir")
self.merger_mass_min = self.configs.getn(comp+"/merger_mass_min")
self.ratio_major = self.configs.getn(comp+"/ratio_major")
self.tau_merger = self.configs.getn(comp+"/tau_merger")
self.frequencies = self.configs.frequencies
self.filename_pattern = self.configs.getn("output/filename_pattern")
# Sky and resolution
if self.sky.type_ == "patch":
self.resolution = self.sky.pixelsize # [arcsec]
else:
raise NotImplementedError("TODO: full-sky simulations")
logger.info("Loaded and set up configurations")
def _simulate_catalog(self):
"""
Simulate the (z, mass) catalog of the cluster distribution
according to the Press-Schechter formalism.
Catalog columns
---------------
* ``z`` : redshifts
* ``mass`` : cluster total mass; unit: [Msun]
"""
logger.info("Simulating the clusters (z, mass) catalog ...")
psform = PSFormalism(configs=self.configs)
counts = psform.calc_cluster_counts(coverage=self.sky.area)
self.catalog, self.catalog_comment = psform.sample_z_m(counts)
logger.info("Simulated cluster catalog of counts %d." % counts)
def _process_catalog(self):
"""
Do some basic processes to the catalog:
* Generate random positions within the sky for each cluster;
* Generate random elongated fraction;
* Generate random rotation angle.
Catalog columns
---------------
* ``lon`` : longitudes; unit: [deg]
* ``lat`` : latitudes; unit: [deg]
* ``felong`` : elongated fraction, defined as the ratio of
elliptical semi-major axis to semi-minor axis;
restricted within [0.3, 1.0]
* ``rotation`` : rotation angle; uniformly distributed within
[0, 360.0); unit: [deg]
NOTE
----
felong (elongated fraction) ::
Adopt a definition (felong = b/a) similar to the Hubble
classification for the elliptical galaxies. As for the
elliptical galaxies classification, E7 is the limit (e.g.,
Wikipedia), therefore felong is also restricted within
[0.3, 1.0], and sampled from a cut and absolute normal
distribution centered at 1.0 with sigma ~0.7/3 (<= 3σ).
"""
logger.info("Preliminary processes to the catalog ...")
num = len(self.catalog)
lon, lat = self.sky.random_points(n=num)
self.catalog["lon"] = lon
self.catalog["lat"] = lat
self.catalog_comment.append(
"lon, lat : longitudes and latitudes [deg]")
logger.info("Added catalog columns: lon, lat.")
felong_min = 0.3
sigma = (1.0 - felong_min) / 3.0
felong = 1.0 - np.abs(np.random.normal(scale=sigma, size=num))
felong[felong < felong_min] = felong_min
self.catalog["felong"] = felong
self.catalog_comment.append(
"felong : elongated fraction (= b/a)")
logger.info("Added catalog column: felong.")
rotation = np.random.uniform(low=0.0, high=360.0, size=num)
self.catalog["rotation"] = rotation
self.catalog_comment.append(
"rotation : ellipse rotation angle [deg]")
logger.info("Added catalog column: rotation.")
def _simulate_mergers(self):
"""
Simulate the *recent major merger* event for each cluster.
First simulate the cluster formation history by tracing the
merger and accretion events of the main cluster, then identify
the most recent major merger event according to the mass ratio
of two merging clusters. And the properties of the found merger
event are appended to the catalog.
NOTE
----
There may be no such recent major merger event satisfying the
criteria, since we only tracing ``tau_merger`` (~3 Gyr) back.
On the other hand, the cluster may only experience minor merger
or accretion events.
Catalog columns
---------------
* ``rmm_mass1``, ``rmm_mass2`` : masses of the main and sub
clusters upon the recent major merger event; unit: [Msun]
* ``rmm_z``, ``rmm_age`` : redshift and cosmic age; unit: [Gyr]
of the recent major merger event.
"""
logger.info("Simulating the galaxy formation to identify " +
"the most recent major merger event ...")
num = len(self.catalog)
mdata = np.zeros(shape=(num, 4))
mdata.fill(np.nan)
num_major = 0 # number of clusters with recent major merger
for i, row in zip(range(num), self.catalog.itertuples()):
ii = i + 1
if ii % 50 == 0:
logger.info("[%d/%d] %.1f%% ..." % (ii, num, 100*ii/num))
z0, M0 = row.z, row.mass
age0 = COSMO.age(z0)
zmax = COSMO.redshift(age0 - self.tau_merger)
clform = ClusterFormation(M0=M0, z0=z0, zmax=zmax,
ratio_major=self.ratio_major,
merger_mass_min=self.merger_mass_min)
clform.simulate_mergertree(main_only=True)
mmev = clform.recent_major_merger
if mmev:
num_major += 1
mdata[i, :] = [mmev["M_main"], mmev["M_sub"],
mmev["z"], mmev["age"]]
mdf = pd.DataFrame(data=mdata,
columns=["rmm_mass1", "rmm_mass2",
"rmm_z", "rmm_age"])
self.catalog = self.catalog.join(mdf, how="outer")
self.catalog_comment += [
"rmm_mass1 : main cluster mass at recent major merger; [Msun]",
"rmm_mass2 : sub cluster mass at recent major merger; [Msun]",
"rmm_z : redshift of the recent major merger",
"rmm_age : cosmic age of the recent major merger; [Gyr]",
]
logger.info("Simulated and identified recent major merger events.")
logger.info("%d (%.1f%%) clusters have recent major mergers." %
(num_major, 100*num_major/num))
def _simulate_halos(self):
"""
Simulate the radio halo properties for each cluster with
recent major merger event.
Attributes
----------
halos : list[dict]
Simulated data for each cluster with recent major merger.
halos_df : `~pandas.DataFrame`
The Pandas DataFrame converted from the above ``halos`` data.
"""
# Select out the clusters with recent major mergers
idx_rmm = ~self.catalog["rmm_z"].isnull()
num = idx_rmm.sum()
logger.info("Simulating halos for %d merging clusters ..." % num)
self.halos = []
i = 0
for row in self.catalog[idx_rmm].itertuples():
i += 1
if i % 50 == 0:
logger.info("[%d/%d] %.1f%% ..." % (i, num, 100*i/num))
logger.info("[%d/%d] " % (i, num) +
"M1[%.2e] & M2[%.2e] @ z[%.3f] -> M[%.2e] @ z[%.3f]" %
(row.rmm_mass1, row.rmm_mass2, row.rmm_z,
row.mass, row.z))
halo = RadioHalo(M_obs=row.mass, z_obs=row.z,
M_main=row.rmm_mass1, M_sub=row.rmm_mass2,
z_merger=row.rmm_z, configs=self.configs)
n_e = halo.calc_electron_spectrum()
emissivity = halo.calc_emissivity(frequencies=self.frequencies)
power = halo.calc_power(emissivity)
flux = halo.calc_flux(emissivity)
Tb_mean = halo.calc_brightness_mean(emissivity, self.frequencies,
pixelsize=self.sky.pixelsize)
data = {
"z0": halo.z_obs,
"M0": halo.M_obs, # [Msun]
"lon": row.lon, # [deg] longitude
"lat": row.lat, # [deg] longitude
"felong": row.felong, # Fraction of elongation
"rotation": row.rotation, # [deg] ellipse rotation angle
"z_merger": halo.z_merger,
"M_main": halo.M_main, # [Msun]
"M_sub": halo.M_sub, # [Msun]
"time_crossing": halo.time_crossing, # [Gyr]
"gamma": halo.gamma, # Lorentz factors
"radius": halo.radius, # [kpc]
"angular_radius": halo.angular_radius, # [arcsec]
"volume": halo.volume, # [kpc^3]
"B": halo.magnetic_field, # [uG]
"n_e": n_e, # [cm^-3]
"frequency": self.frequencies, # [MHz]
"emissivity": emissivity, # [erg/s/cm^3/Hz]
"power": power, # [W/Hz]
"flux": flux, # [Jy]
"Tb_mean": Tb_mean, # [K]
}
self.halos.append(data)
logger.info("Simulated radio halos for merging cluster.")
#
logger.info("Converting halos data to be a Pandas DataFrame ...")
# Ignore the ``gamma`` and ``n_e`` items
keys = ["z0", "M0", "lon", "lat", "felong", "rotation",
"z_merger", "M_main", "M_sub", "time_crossing",
"radius", "angular_radius", "volume", "B", "frequency",
"emissivity", "power", "flux", "Tb_mean"]
self.halos_df = dictlist_to_dataframe(self.halos, keys=keys)
logger.info("Done halos data conversion.")
def _draw_halos(self):
"""
Draw the template images for each halo, and cache them for
simulating the superimposed halos at requested frequencies.
NOTE
----
The drawn template images are append to the dictionaries of
the corresponding halo within the ``self.halos``.
The templates are normalized to have sum of 1.
"""
num = len(self.halos)
logger.info("Draw template images for %d halos ..." % num)
self.halos = []
i = 0
for hdict in self.halos:
i += 1
if i % 50 == 0:
logger.info("[%d/%d] %.1f%% ..." % (i, num, 100*i/num))
theta_e = hdict["angular_radius"] / self.sky.pixelsize
rprofile = helper.halo_rprofile(re=theta_e)
template = helper.draw_halo(rprofile, felong=hdict["felong"],
rotation=hdict["rotation"])
hdict["template"] = template
logger.info("Done drawn halo template images.")
def preprocess(self):
"""
Perform the preparation procedures for the later simulations.
Attributes
----------
_preprocessed : bool
This attribute presents and is ``True`` after the preparation
procedures have been done.
"""
if hasattr(self, "_preprocessed") and self._preprocessed:
return
logger.info("{name}: preprocessing ...".format(name=self.name))
self._simulate_catalog()
self._process_catalog()
self._simulate_mergers()
self._simulate_halos()
self._draw_halos()
self._preprocessed = True
def postprocess(self):
"""
Do some necessary post-simulation operations.
"""
logger.info("{name}: postprocessing ...".format(name=self.name))
# Save the final resulting clusters catalog
logger.info("Save the resulting catalog ...")
if self.catalog_outfile is None:
logger.warning("Catalog output file not set; skip saving!")
else:
dataframe_to_csv(self.catalog, outfile=self.catalog_outfile,
comment=self.catalog_comment,
clobber=self.clobber)
# Dump the simulated clusters data
logger.info("Dumping the simulated halos data ...")
if self.halos_dumpfile is None:
logger.warning("Missing dump outfile; skip dump cluster data!")
else:
pickle_dump(self.halos, outfile=self.halos_dumpfile,
clobber=self.clobber)
# Also save converted DataFrame of halos data
outfile = os.path.splitext(self.halos_dumpfile)[0] + ".csv"
dataframe_to_csv(self.halos_df, outfile, clobber=self.clobber)
logger.info("Saved DataFrame of halos data to file: %s" % outfile)
|