aboutsummaryrefslogtreecommitdiffstats
path: root/fg21sim/extragalactic/clusters/solver.py
blob: da6b4d439d77f27fe840c36ca188129a66ca4d57 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
# Copyright (c) 2017 Weitian LI <weitian@aaronly.me>
# MIT license

"""
Solve the Fokker-Planck equation to derive the time evolution
of the electron spectrum (or number density distribution).
"""

import logging

import numpy as np


logger = logging.getLogger(__name__)


def TDMAsolver(a, b, c, d):
    """
    Tri-diagonal matrix algorithm (a.k.a Thomas algorithm) solver,
    which is much faster than the generic Gaussian elimination algorithm.

    a[i]*x[i-1] + b[i]*x[i] + c[i]*x[i+1] = d[i],
    where: a[0] = c[N-1] = 0

    Example
    -------
    >>> A = np.array([[10,  2, 0, 0],
                      [ 3, 10, 4, 0],
                      [ 0,  1, 7, 5],
                      [ 0,  0, 3, 4]], dtype=float)
    >>> a = np.array([     3, 1, 3], dtype=float)
    >>> b = np.array([10, 10, 7, 4], dtype=float)
    >>> c = np.array([ 2,  4, 5   ], dtype=float)
    >>> d = np.array([ 3,  4, 5, 6], dtype=float)
    >>> print(TDMAsolver(a, b, c, d))
    [ 0.14877589  0.75612053 -1.00188324  2.25141243]
    # compare against numpy linear algebra library
    >>> print(np.linalg.solve(A, d))
    [ 0.14877589  0.75612053 -1.00188324  2.25141243]

    References
    ----------
    [1] http://en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm

    Credit
    ------
    [1] https://gist.github.com/cbellei/8ab3ab8551b8dfc8b081c518ccd9ada9
    """
    # Number of equations
    nf = len(d)
    # Copy the input arrays
    ac, bc, cc, dc = map(np.array, (a, b, c, d))
    for it in range(1, nf):
        mc = ac[it-1] / bc[it-1]
        bc[it] -= mc*cc[it-1]
        dc[it] -= mc*dc[it-1]

    xc = bc
    xc[-1] = dc[-1] / bc[-1]

    for il in range(nf-2, -1, -1):
        xc[il] = (dc[il] - cc[il]*xc[il+1]) / bc[il]

    return xc


class FokkerPlanckSolver:
    """
    Solve the Fokker-Planck equation:

    ∂u(x,t)   ∂  /                ∂u(x) \            u(x,t)
    ------- = -- | B(x)u(x) + C(x)----- | + Q(x,t) - ------
       ∂t     ∂x \                  ∂x  /            T(x,t)

    u(x,t) : distribution/spectrum w.r.t. x at different times
    B(x,t) : advection coefficient
    C(x,t) : diffusion coefficient (>0)
    Q(x,t) : injection coefficient (>=0)
    T(x,t) : escape coefficient

    NOTE
    ----
    The no-flux boundary condition is used, and optional boundary fix
    may be applied.

    Parameters
    ----------
    xmin, xmax : float
        The minimum and maximum bounds of the X (spatial/momentum) axis.
    x_np : int
        Number of (logarithmic grid) points/cells along the X axis
    tstep : float
        Specify to use the constant time step for solving the equation.
    f_advection : function
        Function f(x,t) to calculate the advection coefficient B(x,t)
    f_diffusion : function
        Function f(x,t) to calculate the diffusion coefficient C(x,t)
    f_injection : function
        Function f(x,t) to calculate the injection coefficient Q(x,t)
    f_escape : function, optional
        Function f(x,t) to calculate the escape coefficient T(x,t)
    buffer_np : int, optional
        Number of grid points taking as the buffer region near the lower
        boundary.  The densities within this buffer region will be replaced
        by extrapolating an power law to avoid unphysical accumulations.
        This fix is ignored if this parameter is not specified.

    NOTE
    ----
    All above functions should accept two parameters: ``(x, t)``,
    where ``x`` is an 1D float `~numpy.ndarray` representing the adopted
    logarithmic grid points along the spatial/energy axis, ``t`` is the
    time of each solving step.

    NOTE
    ----
    The diffusion coefficients (i.e., calculated by ``f_diffusion()``)
    should be *positive* (i.e., C(x) > 0), otherwise unstable or wrong
    results may occur, due to the current numerical scheme/algorithm
    adopted.

    References
    ----------
    .. [park1996]
       Park & Petrosian 1996, ApJS, 103, 255
       http://adsabs.harvard.edu/abs/1996ApJS..103..255P
    .. [donnert2014]
       Donnert & Brunetti 2014, MNRAS, 443, 3564
       http://adsabs.harvard.edu/abs/2014MNRAS.443.3564D
    """

    def __init__(self, xmin, xmax, x_np, tstep,
                 f_advection, f_diffusion, f_injection,
                 f_escape=None, buffer_np=None):
        self.xmin = xmin
        self.xmax = xmax
        self.x_np = x_np
        self.tstep = tstep
        self.f_advection = f_advection
        self.f_diffusion = f_diffusion
        self.f_injection = f_injection
        self.f_escape = f_escape
        self.buffer_np = buffer_np

    @property
    def x(self):
        """
        X values of the adopted logarithmic grid.
        """
        grid = np.logspace(np.log10(self.xmin), np.log10(self.xmax),
                           num=self.x_np)
        return grid

    @property
    def dx(self):
        """
        Values of dx[i] on the grid.

        dx[i] = (x[i+1] - x[i-1]) / 2

        NOTE
        ----
        Extrapolate the X grid by 1 point beyond each side, therefore
        avoid NaN for the first and last element of dx[i].
        Otherwise, the subsequent calculation of tridiagonal coefficients
        may be invalid for the boundary elements.

        References: Ref.[park1996],Eq.(8)
        """
        x = self.x  # log scale
        # Extrapolate the x grid by 1 point beyond each side
        ratio = x[1] / x[0]
        x2 = np.concatenate([[x[0]/ratio], x, [x[-1]*ratio]])
        dx_ = (x2[2:] - x2[:-2]) / 2
        return dx_

    @property
    def dx_phalf(self):
        """
        Values of dx[i+1/2] on the grid.

        dx[i+1/2] = x[i+1] - x[i]
        Thus the last element is NaN.

        References: Ref.[park1996],Eq.(8)
        """
        x = self.x
        dx_ = x[1:] - x[:-1]
        grid = np.concatenate([dx_, [np.nan]])
        return grid

    @property
    def dx_mhalf(self):
        """
        Values of dx[i-1/2] on the grid.

        dx[i-1/2] = x[i] - x[i-1]
        Thus the first element is NaN.
        """
        x = self.x
        dx_ = x[1:] - x[:-1]
        grid = np.concatenate([[np.nan], dx_])
        return grid

    @staticmethod
    def X_phalf(X):
        """
        Calculate the values at midpoints (+1/2) for the given quantity.

        X[i+1/2] = (X[i] + X[i+1]) / 2
        Thus the last element is NaN.

        References: Ref.[park1996],Eq.(10)
        """
        Xmid = (X[1:] + X[:-1]) / 2
        return np.concatenate([Xmid, [np.nan]])

    @staticmethod
    def X_mhalf(X):
        """
        Calculate the values at midpoints (-1/2) for the given quantity.

        X[i-1/2] = (X[i-1] + X[i]) / 2
        Thus the first element is NaN.
        """
        Xmid = (X[1:] + X[:-1]) / 2
        return np.concatenate([[np.nan], Xmid])

    @staticmethod
    def W(w):
        # References: Ref.[park1996],Eqs.(27,35)
        w = np.asarray(w)
        with np.errstate(invalid="ignore"):
            # Ignore NaN's
            w = np.abs(w)
            mask = (w < 0.1)  # Comparison on NaN gives False, as expected
        W = np.zeros(w.shape) * np.nan
        W[mask] = 1.0 / (1 + w[mask]**2/24 + w[mask]**4/1920)
        W[~mask] = (w[~mask] * np.exp(-w[~mask]/2) /
                    (1 - np.exp(-w[~mask])))
        return W

    @staticmethod
    def bound_w(w, wmin=1e-8, wmax=1e3):
        """
        Bound the absolute values of ``w`` within [wmin, wmax], to avoid
        the underflow/overflow during later W/Wplus/Wminus calculations.
        """
        ww = np.array(w)
        with np.errstate(invalid="ignore"):
            # Ignore NaN's
            m1 = (np.abs(ww) < wmin)
            m2 = (np.abs(ww) > wmax)
        ww[m1] = wmin * np.sign(ww[m1])
        ww[m2] = wmax * np.sign(ww[m2])
        return ww

    def Wplus(self, w):
        # References: Ref.[park1996],Eq.(32)
        ww = self.bound_w(w)
        W = self.W(ww)
        Wplus = W * np.exp(ww/2)
        return Wplus

    def Wminus(self, w):
        # References: Ref.[park1996],Eq.(32)
        ww = self.bound_w(w)
        W = self.W(ww)
        Wminus = W * np.exp(-ww/2)
        return Wminus

    def tridiagonal_coefs(self, uc, tc, tstep):
        """
        Calculate the coefficients for the tridiagonal system of linear
        equations corresponding to the original Fokker-Planck equation.

        -a[i]*u[i-1] + b[i]*u[i] - c[i]*u[i+1] = r[i],
        where: a[0] = c[N-1] = 0

        NOTE
        ----
        When i=0 or i=N-1, b[i] is invalid due to X[-1/2] or X[N-1/2] are
        invalid. Therefore, b[0] and b[N-1] should be alternatively
        calculated with (e.g., no-flux) boundary condition considered.

        References: Ref.[park1996],Eqs.(16,18,34)
        """
        dt = tstep
        x = self.x
        dx = self.dx
        dx_phalf = self.dx_phalf
        dx_mhalf = self.dx_mhalf
        B = self.f_advection(x, tc)
        C = self.f_diffusion(x, tc)
        Q = self.f_injection(x, tc)
        #
        B_phalf = self.X_phalf(B)
        B_mhalf = self.X_mhalf(B)
        C_phalf = self.X_phalf(C)
        C_mhalf = self.X_mhalf(C)
        w_phalf = dx_phalf * B_phalf / C_phalf
        w_mhalf = dx_mhalf * B_mhalf / C_mhalf
        Wplus_phalf = self.Wplus(w_phalf)
        Wplus_mhalf = self.Wplus(w_mhalf)
        Wminus_phalf = self.Wminus(w_phalf)
        Wminus_mhalf = self.Wminus(w_mhalf)
        #
        a = (dt/dx) * (C_mhalf/dx_mhalf) * Wminus_mhalf
        a[0] = 0.0  # Fix a[0] which is NaN
        c = (dt/dx) * (C_phalf/dx_phalf) * Wplus_phalf
        c[-1] = 0.0  # Fix c[-1] which is NaN
        b = 1 + (dt/dx) * ((C_mhalf/dx_mhalf) * Wplus_mhalf +
                           (C_phalf/dx_phalf) * Wminus_phalf)
        # Calculate b[0] & b[-1], considering the no-flux boundary condition
        b[0] = 1 + (dt/dx[0]) * (C_phalf[0]/dx_phalf[0])*Wminus_phalf[0]
        b[-1] = 1 + (dt/dx[-1]) * (C_mhalf[-1]/dx_mhalf[-1])*Wplus_mhalf[-1]
        # Escape from the system
        if self.f_escape is not None:
            T = self.f_escape(x, tc)
            b += dt / T
        # Right-hand side
        r = dt * Q + uc
        return (a, b, c, r)

    def fix_boundary(self, uc):
        """
        Due to the no-flux boundary condition adopted, particles may
        unphysically pile up near the lower boundary.  Therefore, a
        buffer region spanning ``self.buffer_np`` cells is chosen, within
        which the densities are replaced by extrapolating from the upper
        density distribution as a power law, and the power-law index
        is determined by fitting to the data points of ``self.buffer_np``
        cells on the upper side of the buffer region.

        TODO: also fix the upper boundary in the same way?

        References: Ref.[donnert2014],Sec.(3.3)
        """
        if self.buffer_np is None:
            return uc
        if (uc <= 0.0).sum() > 0:
            logger.warning("solved density has zero/negative values!")
            return uc

        x = self.x
        # Calculate the power-law index for ``self.buffer_np`` from data
        # points just right of the buffer region.
        xp = x[self.buffer_np:(self.buffer_np*2)]
        yp = uc[self.buffer_np:(self.buffer_np*2)]
        # Power-law fit
        pfit = np.polyfit(np.log10(xp), np.log10(yp), deg=1)
        xbuf = x[:self.buffer_np]
        ybuf = 10 ** np.polyval(pfit, np.log10(xbuf))
        uc[:self.buffer_np] = ybuf
        return uc

    def time_step(self):
        """
        Adaptively determine the time step for solving the equation.

        TODO/XXX
        """
        pass

    def solve_step(self, uc, tc, tstep=None):
        """
        Solve the Fokker-Planck equation by a single step.
        """
        if tstep is None:
            tstep = self.tstep
        a, b, c, r = self.tridiagonal_coefs(uc=uc, tc=tc, tstep=tstep)
        TDM_a = -a[1:]  # Also drop the first element
        TDM_b = b
        TDM_c = -c[:-1]  # Also drop the last element
        TDM_rhs = r
        t2 = tc + tstep
        u2 = TDMAsolver(TDM_a, TDM_b, TDM_c, TDM_rhs)
        u2 = self.fix_boundary(u2)
        return (u2, t2)

    def solve(self, u0, tstart, tstop):
        """
        Solve the Fokker-Planck equation from ``tstart`` to ``tstop``,
        with initial spectrum/distribution ``u0``.
        """
        uc = u0
        tc = tstart
        tstep = self.tstep
        logger.debug("Solving Fokker-Planck equation: " +
                     "time: %.3f - %.3f" % (tstart, tstop))
        nstep = int((tstop - tc) / tstep)
        logger.debug("Constant time step: %.3f (#%d steps)" % (tstep, nstep))
        i = 0
        while tc+tstep < tstop:
            i += 1
            logger.debug("[%d/%d] t=%.3f ..." % (i, nstep, tc))
            uc, tc = self.solve_step(uc=uc, tc=tc, tstep=tstep)
        # Last step
        tstep = tstop - tc
        logger.debug("Last step: t=%.3f (tstep=%.3f) ..." % (tc, tstep))
        uc, __ = self.solve_step(uc=uc, tc=tc, tstep=tstep)
        return uc