1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
|
# Copyright (c) 2017 Weitian LI <weitian@aaronly.me>
# MIT license
"""
Solve the Fokker-Planck equation to derive the time evolution
of the electron spectrum (or number density distribution).
"""
import logging
import numpy as np
logger = logging.getLogger(__name__)
def TDMAsolver(a, b, c, d):
"""
Tri-diagonal matrix algorithm (a.k.a Thomas algorithm) solver,
which is much faster than the generic Gaussian elimination algorithm.
a[i]*x[i-1] + b[i]*x[i] + c[i]*x[i+1] = d[i],
where: a[1] = c[n] = 0
References
----------
[1] http://en.wikipedia.org/wiki/Tridiagonal_matrix_algorithm
Credit
------
[1] https://gist.github.com/cbellei/8ab3ab8551b8dfc8b081c518ccd9ada9
"""
# Number of equations
nf = len(d)
# Copy the input arrays
ac, bc, cc, dc = map(np.array, (a, b, c, d))
for it in range(1, nf):
mc = ac[it-1] / bc[it-1]
bc[it] -= mc*cc[it-1]
dc[it] -= mc*dc[it-1]
xc = bc
xc[-1] = dc[-1] / bc[-1]
for il in range(nf-2, -1, -1):
xc[il] = (dc[il] - cc[il]*xc[il+1]) / bc[il]
return xc
class FokkerPlanckSolver:
"""
Solve the Fokker-Planck equation.
∂u(x,t) ∂ / ∂u(x) \ u(x,t)
------- = -- | B(x)u(x) + C(x)----- | + Q(x,t) - ------
∂t ∂x \ ∂x / T(x,t)
u(x,t) : distribution/spectrum w.r.t. x at different times
B(x,t) : advection coefficient
C(x,t) : diffusion coefficient (>0)
Q(x,t) : injection coefficient (>=0)
T(x,t) : escape coefficient
References
----------
[1] Park & Petrosian 1996, ApJS, 103, 255
http://adsabs.harvard.edu/abs/1996ApJS..103..255P
[2] Donnert & Brunetti 2014, MNRAS, 443, 3564
http://adsabs.harvard.edu/abs/2014MNRAS.443.3564D
"""
def __init__(self, xmin, xmax, grid_num, buffer_np, tstep,
f_advection, f_diffusion, f_injection, f_escape=None):
self.xmin = xmin
self.xmax = xmax
# Number of points on the logarithmic grid
self.grid_num = grid_num
# Number of grid points for the buffer region near the lower boundary
self.buffer_np = buffer_np
# Time step
self.tstep = tstep
# Function f(x,t) to calculate the advection coefficient B(x,t)
self.f_advection = f_advection
# Function f(x,t) to calculate the diffusion coefficient C(x,t)
self.f_diffusion = f_diffusion
# Function f(x,t) to calculate the injection coefficient Q(x,t)
self.f_injection = f_injection
# Function f(x,t) to calculate the escape coefficient T(x,t)
self.f_escape = f_escape
@property
def x(self):
"""
X values of the adopted logarithmic grid.
"""
grid = np.logspace(np.log10(self.xmin), np.log10(self.xmax),
num=self.grid_num)
return grid
@property
def dx(self):
"""
Values of dx[i] on the grid.
dx[i] = (x[i+1] - x[i-1]) / 2
NOTE:
Extrapolate the x grid by 1 point beyond each side, therefore
avoid NaN for the first and last element of dx[i].
Otherwise, the following calculation of tridiagonal coefficients
may be invalid on the boundary elements.
References: Ref.[1],Eq.(8)
"""
x = self.x
# Extrapolate the x grid by 1 point beyond each side
x2 = np.concatenate([
[x[0]**2/x[1]],
x,
[x[-1]**2/x[-2]],
])
dx_ = (x2[2:] - x2[:-2]) / 2
return dx_
@property
def dx_phalf(self):
"""
Values of dx[i+1/2] on the grid.
dx[i+1/2] = x[i+1] - x[i]
Thus the last element is NaN.
References: Ref.[1],Eq.(8)
"""
x = self.x
dx_ = x[1:] - x[:-1]
grid = np.concatenate([dx_, [np.nan]])
return grid
@property
def dx_mhalf(self):
"""
Values of dx[i-1/2] on the grid.
dx[i-1/2] = x[i] - x[i-1]
Thus the first element is NaN.
"""
x = self.x
dx_ = x[1:] - x[:-1]
grid = np.concatenate([[np.nan], dx_])
return grid
@staticmethod
def X_phalf(X):
"""
Calculate the values at midpoints (+1/2) for the given quantity.
X[i+1/2] = (X[i] + X[i+1]) / 2
Thus the last element is NaN.
References: Ref.[1],Eq.(10)
"""
Xmid = (X[1:] + X[:-1]) / 2
return np.concatenate([Xmid, [np.nan]])
@staticmethod
def X_mhalf(X):
"""
Calculate the values at midpoints (-1/2) for the given quantity.
X[i-1/2] = (X[i-1] + X[i]) / 2
Thus the first element is NaN.
"""
Xmid = (X[1:] + X[:-1]) / 2
return np.concatenate([[np.nan], Xmid])
@staticmethod
def W(w):
# References: Ref.[1],Eqs.(27,35)
with np.errstate(invalid="ignore"):
# Ignore NaN's
w = np.abs(w)
mask = (w < 0.1) # Comparison on NaN gives False, as expected
W = np.zeros(w.shape) * np.nan
W[mask] = 1.0 / (1 + w[mask]**2/24 + w[mask]**4/1920)
W[~mask] = (w[~mask] * np.exp(-w[~mask]/2) /
(1 - np.exp(-w[~mask])))
return W
@staticmethod
def bound_w(w, wmin=1e-8, wmax=1e3):
"""
Bound the absolute values of w within [wmin, wmax].
To avoid the underflow/overflow during later W/Wplus/Wminus
calculations.
"""
with np.errstate(invalid="ignore"):
# Ignore NaN's
m1 = (np.abs(w) < wmin)
m2 = (np.abs(w) > wmax)
ww = np.array(w)
ww[m1] = wmin * np.sign(ww[m1])
ww[m2] = wmax * np.sign(ww[m2])
return ww
def Wplus(self, w):
# References: Ref.[1],Eq.(32)
ww = self.bound_w(w)
W = self.W(ww)
Wplus = W * np.exp(ww/2)
return Wplus
def Wminus(self, w):
# References: Ref.[1],Eq.(32)
ww = self.bound_w(w)
W = self.W(ww)
Wminus = W * np.exp(-ww/2)
return Wminus
def tridiagonal_coefs(self, tc, uc):
"""
Calculate the coefficients for the tridiagonal system of linear
equations corresponding to the original Fokker-Planck equation.
-a[i]*u[i-1] + b[i]*u[i] - c[i]*u[i+1] = r[i],
where: a[0] = c[N-1] = 0
NOTE
----
When i=0 or i=N-1, b[i] is invalid due to X[-1/2] or X[N-1/2] are
invalid. Therefore, b[0] and b[N-1] should be alternatively
calculated with (e.g., no-flux) boundary condition considered.
References: Ref.[1],Eqs.(16,18,34)
"""
x = self.x
dx = self.dx
dx_phalf = self.dx_phalf
dx_mhalf = self.dx_mhalf
dt = self.tstep
B = np.array([self.f_advection(x_, tc) for x_ in x])
C = np.array([self.f_diffusion(x_, tc) for x_ in x])
Q = np.array([self.f_injection(x_, tc) for x_ in x])
#
B_phalf = self.X_phalf(B)
B_mhalf = self.X_mhalf(B)
C_phalf = self.X_phalf(C)
C_mhalf = self.X_mhalf(C)
w_phalf = dx_phalf * B_phalf / C_phalf
w_mhalf = dx_mhalf * B_mhalf / C_mhalf
Wplus_phalf = self.Wplus(w_phalf)
Wplus_mhalf = self.Wplus(w_mhalf)
Wminus_phalf = self.Wminus(w_phalf)
Wminus_mhalf = self.Wminus(w_mhalf)
#
a = (dt/dx) * (C_mhalf/dx_mhalf) * Wminus_mhalf
a[0] = 0.0 # Fix a[0] which is NaN
c = (dt/dx) * (C_phalf/dx_phalf) * Wplus_phalf
c[-1] = 0.0 # Fix c[-1] which is NaN
b = 1 + (dt/dx) * ((C_mhalf/dx_mhalf) * Wplus_mhalf +
(C_phalf/dx_phalf) * Wminus_phalf)
# Escape from the system
if self.f_escape is not None:
T = np.array([self.f_escape(x_, tc) for x_ in x])
b += dt / T
# Calculate b[0] & b[-1], considering the no-flux boundary condition
b[0] = 1 + (dt/dx[0]) * (C_phalf[0]/dx_phalf[0])*Wminus_phalf[0]
b[-1] = 1 + (dt/dx[-1]) * (C_mhalf[-1]/dx_mhalf[-1])*Wplus_mhalf[-1]
r = dt * Q + uc
return (a, b, c, r)
def fix_boundary(self, uc):
"""
Truncate the lower end (i.e., near the lower boundary) of the
distribution/spectrum and then extrapolate as a power law, in order
to avoid the unphysical pile-up of electrons at the lower regime.
References: Ref.[2],Sec.(3.3)
"""
uc = np.asarray(uc)
x = self.x
# Calculate the power-law index
xa = x[self.buffer_np]
xb = x[self.buffer_np+1]
ya = uc[self.buffer_np]
yb = uc[self.buffer_np+1]
if ya > 0 and yb > 0:
# Truncate and extrapolate as a power law
s = np.log(yb/ya) / np.log(xb/xa)
uc[:self.buffer_np] = ya * (x[:self.buffer_np] / xa) ** s
return uc
def solve_step(self, tc, uc):
"""
Solve the Fokker-Planck equation by a single step.
"""
a, b, c, r = self.tridiagonal_coefs(tc, uc)
TDM_a = -a[1:] # Also drop the first element
TDM_b = b
TDM_c = -c[:-1] # Also drop the last element
TDM_rhs = r
t2 = tc + self.tstep
u2 = TDMAsolver(TDM_a, TDM_b, TDM_c, TDM_rhs)
u2 = self.fix_boundary(u2)
# Clear negative number densities
# u2[u2 < 0] = 0
return (t2, u2)
def solve(self, u0, tstart, tstop):
"""
Solve the Fokker-Planck equation from ``tstart`` to ``tstop``,
with initial spectrum/distribution ``u0``.
"""
uc = u0
tc = tstart
logger.info("Solving Fokker-Planck equation: " +
"time: %.3f - %.3f" % (tstart, tstop))
nstep = (tstop - tc) / self.tstep
i = 0
while tc < tstop:
i += 1
logger.debug("[%d/%d] t=%.3f ..." % (i, nstep, tc))
tc, uc = self.solve_step(tc, uc)
return uc
|