aboutsummaryrefslogtreecommitdiffstats
path: root/fg21sim/extragalactic/pointsources/fr2.py
blob: 2fd1f3ed154819cd490458e4f5334082c5ca5966 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
# Copyright (c) 2016 Zhixian MA <zxma_sjtu@qq.com>
# MIT license

import numpy as np
import healpy as hp

from .base import BasePointSource
from .psparams import PixelParams
from ...utils import grid
from ...utils import convert


class FRII(BasePointSource):
    """
    Generate Faranoff-Riley II (FRII) AGN

    Parameters
    ----------
    lobe_maj: float
        The major half axis of the lobe
    lobe_min: float
        The minor half axis of the lobe
    lobe_ang: float
        The rotation angle of the lobe correspoind to line of sight

    Reference
    ----------
    [1] Wang J et al.,
        "How to Identify and Separate Bright Galaxy Clusters from the
        Low-frequency Radio Sky?",
        2010, ApJ, 723, 620-633.
        http://adsabs.harvard.edu/abs/2010ApJ...723..620W
    [2] Fast cirles drawing
        https://github.com/liweitianux/fg21sim/fg21sim/utils/draw.py
        https://github.com/liweitianux/fg21sim/fg21sim/utils/grid.py
    """

    def __init__(self, configs):
        super().__init__(configs)
        self.columns.extend(
            ['lobe_maj (rad)', 'lobe_min (rad)', 'lobe_ang (deg)'])
        self.nCols = len(self.columns)
        self._set_configs()
        # Paramters for core/lobe ratio
        # Willman et al. 2008 Sec2.5.(iii)-(iv)
        self.xmed = -2.8
        # Lorentz factor of the jet
        self.gamma = 8
        # Number density matrix
        self.rho_mat = self.calc_number_density()
        # Cumulative distribution of z and lumo
        self.cdf_z, self.cdf_lumo = self.calc_cdf()

    def _set_configs(self):
        """Load the configs and set the corresponding class attributes"""
        super()._set_configs()
        pscomp = "extragalactic/pointsources/FRII/"
        # point sources amount
        self.num_ps = self.configs.getn(pscomp+"numps")
        # prefix
        self.prefix = self.configs.getn(pscomp+"prefix")
        # redshift bin
        z_type = self.configs.getn(pscomp+"z_type")
        if z_type == 'custom':
            start = self.configs.getn(pscomp+"z_start")
            stop = self.configs.getn(pscomp+"z_stop")
            step = self.configs.getn(pscomp+"z_step")
            self.zbin = np.arange(start, stop + step, step)
        else:
            self.zbin = np.arange(0.1, 10, 0.05)
        # luminosity bin
        lumo_type = self.configs.getn(pscomp+"lumo_type")
        if lumo_type == 'custom':
            start = self.configs.getn(pscomp+"lumo_start")
            stop = self.configs.getn(pscomp+"lumo_stop")
            step = self.configs.getn(pscomp+"lumo_step")
            self.lumobin = np.arange(start, stop + step, step)
        else:
            self.lumobin = np.arange(25.5, 30.5, 0.1)  # [W/Hz/sr]

    def calc_number_density(self):
        """
        Calculate number density rho(lumo,z) of FRI

        References
        ----------
        [1] Wilman et al.,
             "A semi-empirical simulation of the extragalactic radio continuum
             sky for next generation radio telescopes",
             2008, MNRAS, 388, 1335-1348.
             http://adsabs.harvard.edu/abs/2008MNRAS.388.1335W
        [2] Willott et al.,
            "The radio luminosity function from the low-frequency 3CRR,
             6CE and 7CRS complete samples",
             2001, MNRAS, 322, 536-552.
             http://adsabs.harvard.edu/abs/2001MNRAS.322..536W

        Returns
        -------
        rho_mat: np.ndarray
            Number density matris (joint-distribution of luminosity and
            reshift).
        """
        # Init
        rho_mat = np.zeros((len(self.lumobin), len(self.zbin)))
        # Parameters
        # Refer to [2] Table. 1  model C and Willman's section 2.4
        alpha = 2.27  # spectral index
        lumo_star = 10.0**26.95  # critical luminosity
        rho_l0 = 10.0**(-6.196)  # normalization constant
        z0 = 1.91  # center redshift
        z2 = 1.378  # variance
        # Calculation
        for i, z in enumerate(self.zbin):
            # space density revolusion
            fh = np.exp(-0.5 * (z - z0)**2 / z2**2)
            rho_mat[:, i] = ((rho_l0 * (10**self.lumobin / lumo_star) **
                              (-alpha) *
                              np.exp(-lumo_star / 10.0**self.lumobin)) *
                             fh)

        return rho_mat

    def gen_lobe(self):
        """
        Calculate lobe parameters

        References
        ----------
        [1] Wilman et al.,
             "A semi-empirical simulation of the extragalactic radio continuum
             sky for next generation radio telescopes",
             2008, MNRAS, 388, 1335-1348.
             http://adsabs.harvard.edu/abs/2008MNRAS.388.1335W

        Return
        ------
        lobe: list
            lobe = [lobe_maj, lobe_min, lobe_ang], which represent the major
            and minor axes and the rotation angle.
        """
        D0 = 1  # [Mpc]
        self.lobe_maj = 0.5 * np.random.uniform(0, D0 * (1 + self.z)**(-1.4))
        self.lobe_min = self.lobe_maj * np.random.uniform(0.2, 1)
        self.lobe_ang = np.random.uniform(0, np.pi) / np.pi * 180

        # Transform to pixel
        self.lobe_maj = self.param.get_angle(self.lobe_maj)
        self.lobe_min = self.param.get_angle(self.lobe_min)
        lobe = [self.lobe_maj, self.lobe_min, self.lobe_ang]

        return lobe

    def gen_single_ps(self):
        """
        Generate single point source, and return its data as a list.

        """
        # Redshift and luminosity
        self.z, self.lumo = self.get_lumo_redshift()
        self.lumo_sr = self.lumo
        # angular diameter distance
        self.param = PixelParams(self.z)
        self.dA = self.param.dA
        # W/Hz/Sr to Jy
        dA = self.dA * 3.0856775814671917E+22  # Mpc to meter
        self.lumo = self.lumo / dA**2 / (10.0**-24)  # [Jy]
        # Position
        x = np.random.uniform(0, 1)
        self.lat = (np.arccos(2 * x - 1) / np.pi * 180 - 90)  # [deg]
        self.lon = np.random.uniform(0, np.pi * 2) / np.pi * 180  # [deg]
        # lobe
        lobe = self.gen_lobe()
        # Area
        self.area = np.pi * self.lobe_maj * self.lobe_min

        ps_list = [self.z, self.dA, self.lumo, self.lat, self.lon, self.area]
        ps_list.extend(lobe)

        return ps_list

    def draw_single_ps(self, freq):
        """
        Designed to draw the elliptical lobes of FRI and FRII

        Prameters
        ---------
        nside: int and dyadic
        self.ps_catalog: pandas.core.frame.DataFrame
            Data of the point sources
        ps_type: int
            Class type of the point soruces
        freq: float
            frequency
        """
        # Init
        resolution = self.resolution / 60  # [degree]
        npix = hp.nside2npix(self.nside)
        hpmap = np.zeros((npix,))
        num_ps = self.ps_catalog.shape[0]
        # Gen flux list
        Tb_list = self.calc_Tb(freq)
        ps_lobe = Tb_list[:, 1]
        # Iteratively draw ps
        for i in range(num_ps):
            # Parameters
            c_lat = self.ps_catalog['Lat (deg)'][i]  # core lat [deg]
            c_lon = self.ps_catalog['Lon (deg)'][i]  # core lon [au.deg]
            lobe_maj = self.ps_catalog['lobe_maj (rad)'][
                i] * 180 / np.pi  # [deg]
            lobe_min = self.ps_catalog['lobe_min (rad)'][
                i] * 180 / np.pi  # [deg]
            lobe_ang = self.ps_catalog['lobe_ang (deg)'][
                i] / 180 * np.pi  # [rad]
            # Offset to the core, refer to Willman Sec2.5.vii
            offset = lobe_maj * 2 * np.random.uniform(0.2, 0.8)
            # Lobe1
            lobe1_lat = (lobe_maj / 2 + offset) * np.cos(lobe_ang)
            lobe1_lat = c_lat + lobe1_lat
            lobe1_lon = (lobe_maj / 2 + offset) * np.sin(lobe_ang)
            lobe1_lon = c_lon + lobe1_lon
            # draw
            # Fill with ellipse
            lon, lat, gridmap = grid.make_grid_ellipse(
                (lobe1_lon, lobe1_lat), (lobe_maj, lobe_min),
                resolution, lobe_ang / np.pi * 180)
            indices, values = grid.map_grid_to_healpix(
                (lon, lat, gridmap), self.nside)
            hpmap[indices] += ps_lobe[i]

            # lobe1_hotspot
            lobe1_hot_lat = (lobe_maj + offset) * np.cos(lobe_ang)
            lobe1_hot_lat = (c_lat + 90 + lobe1_lat) / 180 * np.pi
            lobe1_hot_lon = (lobe_maj + offset) * np.sin(lobe_ang)
            lobe1_hot_lon = (c_lon + lobe1_lon) / 180 * np.pi
            if lobe1_hot_lat < 0:
                lobe1_hot_lat += np.pi
            elif lobe1_hot_lat > np.pi:
                lobe1_hot_lat -= np.pi
            lobe1_hot_index = hp.ang2pix(
                self.nside, lobe1_hot_lat, lobe1_hot_lon)
            hpmap[lobe1_hot_index] += Tb_list[i, 2]

            # Lobe2
            lobe2_lat = (lobe_maj / 2) * np.cos(lobe_ang + np.pi)
            lobe2_lat = c_lat + lobe2_lat
            lobe2_lon = (lobe_maj / 2) * np.sin(lobe_ang + np.pi)
            lobe2_lon = c_lon + lobe2_lon
            # draw
            # Fill with ellipse
            lon, lat, gridmap = grid.make_grid_ellipse(
                (lobe2_lon, lobe2_lat), (lobe_maj, lobe_min),
                resolution, lobe_ang / np.pi * 180)
            indices, values = grid.map_grid_to_healpix(
                (lon, lat, gridmap), self.nside)
            hpmap[indices] += ps_lobe[i]

            # lobe2_hotspot
            lobe2_hot_lat = (lobe_maj + offset) * np.cos(lobe_ang + np.pi)
            lobe2_hot_lat = (c_lat + 90 + lobe1_lat) / 180 * np.pi
            lobe2_hot_lon = (lobe_maj + offset) * np.sin(lobe_ang + np.pi)
            lobe2_hot_lon = (c_lon + lobe1_lon) / 180 * np.pi
            if lobe2_hot_lat < 0:
                lobe2_hot_lat += np.pi
            elif lobe2_hot_lat > np.pi:
                lobe2_hot_lat -= np.pi
            lobe2_hot_index = hp.ang2pix(
                self.nside, lobe2_hot_lat, lobe2_hot_lon)
            hpmap[lobe2_hot_index] += Tb_list[i, 2]

            # Core
            pix_tmp = hp.ang2pix(self.nside,
                                 (self.ps_catalog['Lat (deg)'] + 90) /
                                 180 * np.pi, self.ps_catalog['Lon (deg)'] /
                                 180 * np.pi)
            ps_core = Tb_list[:, 0]
            hpmap[pix_tmp] += ps_core

        return hpmap

    def draw_ps(self, freq):
        """
        Read csv ps list file, and generate the healpix structure vector
        with the respect frequency.
        """
        # Init
        num_freq = len(freq)
        npix = hp.nside2npix(self.nside)
        hpmaps = np.zeros((npix, num_freq))

        # Gen ps_catalog
        self.gen_catalog()
        # get hpmaps
        for i in range(num_freq):
            hpmaps[:, i] = self.draw_single_ps(freq[i])

        return hpmaps

    def calc_single_Tb(self, area, freq):
        """
        Calculate brightness temperatur of a single ps

        Parameters
        ------------
        area: float
            Area of the PS
            Unit: [arcsec^2]
        freq: `~astropy.units.Quantity`
              Frequency, e.g., `1.0*au.MHz`

        Return
        ------
        Tb:`~astropy.units.Quantity`
             Average brightness temperature, e.g., `1.0*au.K`
        """
        # Init
        freq_ref = 151  # [MHz]
        freq = freq  # [MHz]
        # Luminosity at 151MHz
        lumo_151 = self.lumo  # [Jy]
        # Calc flux
        # core-to-extend ratio
        ang = self.lobe_ang / 180 * np.pi
        x = np.random.normal(self.xmed, 0.5)
        beta = np.sqrt((self.gamma**2 - 1) / self.gamma)
        B_theta = 0.5 * ((1 - beta * np.cos(ang))**-2 +
                         (1 + beta * np.cos(ang))**-2)
        ratio_obs = 10**x * B_theta
        # Core
        lumo_core = ratio_obs / (1 + ratio_obs) * lumo_151
        a0 = (np.log10(lumo_core) - 0.07 *
              np.log10(freq_ref * 10.0E-3) +
              0.29 * np.log10(freq_ref * 10.0E-3) *
              np.log10(freq_ref * 10.0E-3))
        lgs = (a0 + 0.07 * np.log10(freq * 10.0E-3) - 0.29 *
               np.log10(freq * 10.0E-3) *
               np.log10(freq * 10.0E-3))
        flux_core = 10**lgs  # [Jy]
        # core area
        npix = hp.nside2npix(self.nside)
        sr_to_arcsec2 = (np.rad2deg(1) * 3600) ** 2  # [sr] -> [arcsec^2]
        core_area = 4 * np.pi / npix * sr_to_arcsec2  # [arcsec^2]
        Tb_core = convert.Fnu_to_Tb_fast(flux_core, core_area, freq)  # [K]
        # lobe
        lumo_lobe = lumo_151 * (1 - ratio_obs) / (1 + ratio_obs)  # [Jy]
        flux_lobe = (freq / freq_ref)**(-0.75) * lumo_lobe
        Tb_lobe = convert.Fnu_to_Tb_fast(flux_lobe, area, freq)  # [K]

        # hotspots
        # Willman Eq. (3)
        f_hs = (0.4 * (np.log10(self.lumo_sr) - 25.5) +
                np.random.uniform(-0.5, 0.5))
        Tb_hotspot = Tb_lobe * (1 + f_hs)
        Tb = [Tb_core, Tb_lobe, Tb_hotspot]

        return Tb

    def calc_Tb(self, freq):
        """
        Calculate the surface brightness  temperature of the point sources.

        Parameters
        ------------
        freq: `~astropy.units.Quantity`
             Frequency, e.g., `1.0*au.MHz`

        Return
        ------
        Tb_list: list
             Point sources brightness temperature
        """
        # Tb_list
        num_ps = self.ps_catalog.shape[0]
        Tb_list = np.zeros((num_ps, 3))
        sr_to_arcsec2 = (np.rad2deg(1) * 3600) ** 2  # [sr] -> [arcsec^2]
        # Iteratively calculate Tb
        for i in range(num_ps):
            ps_area = self.ps_catalog['Area (sr)'][i]  # [sr]
            area = ps_area * sr_to_arcsec2
            Tb_list[i, :] = self.calc_single_Tb(area, freq)

        return Tb_list