aboutsummaryrefslogtreecommitdiffstats
path: root/fg21sim/galactic/freefree.py
blob: 2db6f8474ed6b6759a7facce5b2a11d4739f4447 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
# Copyright (c) 2016-2017 Weitian LI <weitian@aaronly.me>
# MIT license

"""
Diffuse Galactic free-free emission simulations.

References
----------
.. [dickinson2003]
   Dickinson, C.; Davies, R. D.; Davis, R. J.,
   "Towards a free-free template for CMB foregrounds",
   2003, MNRAS, 341, 369,
   http://adsabs.harvard.edu/abs/2003MNRAS.341..369D

.. [finkbeiner2003]
   Finkbeiner, Douglas P.,
   "A Full-Sky Hα Template for Microwave Foreground Prediction",
   2003, ApJS, 146, 407,
   http://adsabs.harvard.edu/abs/2003ApJS..146..407F

.. [schlegel1998]
   Schlegel, David J.; Finkbeiner, Douglas P.; Davis, Marc,
   "Maps of Dust Infrared Emission for Use in Estimation of Reddening
   and Cosmic Microwave Background Radiation Foregrounds",
   1998, ApJ, 500, 525,
   http://adsabs.harvard.edu/abs/1998ApJ...500..525S
"""

import os
import logging
from datetime import datetime, timezone

import numpy as np
from astropy.io import fits
import astropy.units as au

from ..sky import get_sky


logger = logging.getLogger(__name__)


class FreeFree:
    """
    Simulate the diffuse Galactic free-free emission.

    The [dickinson2003] method is followed to derive the free-free template.
    The all-sky Hα survey map [Finkbeiner2003] is first corrected for dust
    absorption using the infrared 100-μm dust map [Schlegel1998],
    and then converted to free-free emission map (brightness temperature).

    Parameters
    ----------
    configs : ConfigManager object
        An `ConfigManager` object contains default and user configurations.
        For more details, see the example config specification.

    Attributes
    ----------
    TODO
    """
    # Component name
    name = "Galactic free-free"

    def __init__(self, configs):
        self.configs = configs
        self._set_configs()

    def _set_configs(self):
        """Load the configs and set the corresponding class attributes."""
        comp = "galactic/freefree"
        self.halphamap_path = self.configs.get_path(comp+"/halphamap")
        self.halphamap_unit = au.Unit(
            self.configs.getn(comp+"/halphamap_unit"))
        self.dustmap_path = self.configs.get_path(comp+"/dustmap")
        self.dustmap_unit = au.Unit(
            self.configs.getn(comp+"/dustmap_unit"))
        self.f_dust = self.configs.getn(comp+"/dust_fraction")
        self.halpha_abs_th = self.configs.getn(comp+"/halpha_abs_th")  # [mag]
        self.Te = self.configs.getn(comp+"/electron_temperature")  # [K]
        self.prefix = self.configs.getn(comp+"/prefix")
        self.save = self.configs.getn(comp+"/save")
        self.output_dir = self.configs.get_path(comp+"/output_dir")
        #
        self.filename_pattern = self.configs.getn("output/filename_pattern")
        self.use_float = self.configs.getn("output/use_float")
        self.checksum = self.configs.getn("output/checksum")
        self.clobber = self.configs.getn("output/clobber")
        self.frequencies = self.configs.frequencies  # [MHz]
        self.freq_unit = au.Unit(self.configs.getn("frequency/unit"))
        #
        logger.info("Loaded and set up configurations")

    def _load_maps(self):
        """
        Load the Hα map, and 100-μm dust map.
        """
        sky = get_sky(self.configs)
        logger.info("Loading H[alpha] map ...")
        self.halphamap = sky.open(self.halphamap_path)
        # Validate input map unit
        if self.halphamap_unit != au.Unit("Rayleigh"):
            raise ValueError("unsupported Halpha map unit: {0}".format(
                self.halphamap_unit))
        logger.info("Loading dust map ...")
        self.dustmap = sky.open(self.dustmap_path)
        # Validate input map unit
        if self.dustmap_unit != au.Unit("MJy / sr"):
            raise ValueError("unsupported dust map unit: {0}".format(
                self.dustmap_unit))

    def _correct_dust_absorption(self):
        """
        Correct the Hα map for dust absorption using the
        100-μm dust map.

        References: Ref.[dickinson2003],Eq.(1,3),Sec.(2.5)
        """
        if hasattr(self, "_dust_corrected") and self._dust_corrected:
            return
        #
        logger.info("Correct H[alpha] map for dust absorption")
        logger.info("Effective dust fraction: {0}".format(self.f_dust))
        # Mask the regions where the true Halpha absorption is uncertain.
        # When the dust absorption goes rather large, the true Halpha
        # absorption can not well determined.
        # Corresponding dust absorption threshold, unit: [ MJy / sr ]
        dust_abs_th = self.halpha_abs_th / 0.0462 / self.f_dust
        logger.info("Dust absorption mask threshold: " +
                    "{0:.1f} MJy/sr ".format(dust_abs_th) +
                    "<-> H[alpha] absorption threshold: " +
                    "{0:.1f} mag".format(self.halpha_abs_th))
        mask = (self.dustmap.data > dust_abs_th)
        self.dustmap.data[mask] = np.nan
        fp_mask = 100 * mask.sum() / self.dustmap.data.size
        logger.warning("Dust map masked fraction: {0:.1f}%".format(fp_mask))
        #
        halphamap_corr = (self.halphamap.data *
                          10**(self.dustmap.data * 0.0185 * self.f_dust))
        self.halphamap.data = halphamap_corr
        self._dust_corrected = True
        logger.info("Done dust absorption correction")

    def _calc_factor_a(self, nu):
        """
        Calculate the ratio factor a(Te, ν), which will be used to
        convert the Halpha emission [Rayleigh] to free-free emission
        brightness temperature [K].

        Parameters
        ----------
        nu : float
            The frequency where to calculate the factor a(nu).
            Unit: [MHz]

        Returns
        -------
        a : float
            The factor for Hα to free-free conversion.

        References: [dickinson2003],Eq.(8)
        """
        term1 = 0.183 * nu**0.1 * self.Te**(-0.15)
        term2 = 3.91 - np.log(nu) + 1.5*np.log(self.Te)
        a = term1 * term2
        return a

    def _calc_halpha_to_freefree(self, nu):
        """
        Calculate the conversion factor between Hα emission [Rayleigh]
        to radio free-free emission [K] at frequency ν [MHz].

        Parameters
        ----------
        nu : float
            The frequency where to calculate the conversion factor.
            Unit: [MHz]

        Returns
        -------
        h2f : float
            The conversion factor between Hα emission and free-free emission.

        References: [dickinson2003],Eq.(11)
        NOTE: The above referred formula has a superfluous "10^3" term!
        """
        a = self._calc_factor_a(nu)
        h2f = 38.86 * a * nu**(-2.1) * 10**(290/self.Te) * self.Te**0.667
        return h2f

    def _make_filepath(self, **kwargs):
        """
        Make the path of output file according to the filename pattern
        and output directory loaded from configurations.
        """
        data = {
            "prefix": self.prefix,
        }
        data.update(kwargs)
        filename = self.filename_pattern.format(**data)
        filepath = os.path.join(self.output_dir, filename)
        return filepath

    def _make_header(self):
        """
        Make the header with detail information (e.g., parameters and
        history) for the simulated products.
        """
        header = fits.Header()
        header["COMP"] = (self.name, "Emission component")
        header["BUNIT"] = ("K", "data unit is Kelvin")
        header["CREATOR"] = (__name__, "File creator")
        # TODO:
        history = []
        comments = []
        for hist in history:
            header.add_history(hist)
        for cmt in comments:
            header.add_comment(cmt)
        self.header = header
        logger.info("Created FITS header")

    def output(self, skymap, frequency):
        """
        Write the simulated free-free map to disk with proper header
        keywords and history.

        Returns
        -------
        outfile : str
            The (absolute) path to the output sky map file.
        """
        outfile = self._make_filepath(frequency=frequency)
        if not hasattr(self, "header"):
            self._make_header()
        header = self.header.copy()
        header["FREQ"] = (frequency, "Frequency [ MHz ]")
        header["DATE"] = (
            datetime.now(timezone.utc).astimezone().isoformat(),
            "File creation date"
        )
        if self.use_float:
            skymap = skymap.astype(np.float32)
        sky = get_sky(configs=self.configs)
        sky.data = skymap
        sky.header = header
        sky.write(outfile, clobber=self.clobber, checksum=self.checksum)
        return outfile

    def preprocess(self):
        """
        Perform the preparation procedures for the final simulations.

        Attributes
        ----------
        _preprocessed : bool
            This attribute presents and is ``True`` after the preparation
            procedures are performed, which indicates that it is ready to
            do the subsequent simulations.
        """
        if hasattr(self, "_preprocessed") and self._preprocessed:
            return
        #
        logger.info("{name}: preprocessing ...".format(name=self.name))
        self._load_maps()
        # Correct for dust absorption
        self._correct_dust_absorption()
        #
        self._preprocessed = True

    def simulate_frequency(self, frequency):
        """
        Simulate the free-free map at the specified frequency.

        Returns
        -------
        skymap_f : 1D `~numpy.ndarray`
            The sky map at the input frequency.
        filepath : str
            The (absolute) path to the output sky map if saved,
            otherwise ``None``.
        """
        self.preprocess()
        #
        logger.info("Simulating {name} map at {freq} ({unit}) ...".format(
            name=self.name, freq=frequency, unit=self.freq_unit))
        ratio_K_R = self._calc_halpha_to_freefree(frequency)
        skymap_f = self.halphamap.data * ratio_K_R
        #
        if self.save:
            filepath = self.output(skymap_f, frequency)
        else:
            filepath = None
        return (skymap_f, filepath)

    def simulate(self, frequencies=None):
        """
        Simulate the synchrotron map at the specified frequencies.

        Parameters
        ----------
        frequencies : float, or list[float]
            The frequencies where to simulate the foreground map.
            Unit: [MHz]
            Default: None (i.e., use ``self.frequencies``)

        Returns
        -------
        skymaps : list[1D `~numpy.ndarray`]
            List of sky maps at each frequency.
        paths : list[str]
            List of (absolute) path to the output sky maps.
        """
        if frequencies is not None:
            frequencies = np.array(frequencies, ndmin=1)
        else:
            frequencies = self.frequencies

        skymaps = []
        paths = []
        for freq in frequencies:
            skymap_f, outfile = self.simulate_frequency(freq)
            skymaps.append(skymap_f)
            paths.append(outfile)
        return (skymaps, paths)

    def postprocess(self):
        """Perform the post-simulation operations before the end."""
        pass