1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
|
# Copyright (c) 2016-2017 Weitian LI <weitian@aaronly.me>
# MIT license
"""
Diffuse Galactic free-free emission simulations.
References
----------
.. [dickinson2003]
Dickinson, C.; Davies, R. D.; Davis, R. J.,
"Towards a free-free template for CMB foregrounds",
2003, MNRAS, 341, 369,
http://adsabs.harvard.edu/abs/2003MNRAS.341..369D
.. [finkbeiner2003]
Finkbeiner, Douglas P.,
"A Full-Sky Hα Template for Microwave Foreground Prediction",
2003, ApJS, 146, 407,
http://adsabs.harvard.edu/abs/2003ApJS..146..407F
.. [schlegel1998]
Schlegel, David J.; Finkbeiner, Douglas P.; Davis, Marc,
"Maps of Dust Infrared Emission for Use in Estimation of Reddening
and Cosmic Microwave Background Radiation Foregrounds",
1998, ApJ, 500, 525,
http://adsabs.harvard.edu/abs/1998ApJ...500..525S
"""
import os
import logging
import numpy as np
from ..sky import get_sky
logger = logging.getLogger(__name__)
class FreeFree:
"""
Simulate the diffuse Galactic free-free emission.
The [dickinson2003] method is followed to derive the free-free template.
The all-sky Hα survey map [Finkbeiner2003] is first corrected for dust
absorption using the infrared 100-μm dust map [Schlegel1998],
and then converted to free-free emission map (brightness temperature).
Parameters
----------
configs : `~ConfigManager`
An ``ConfigManager`` object contains default and user configurations.
For more details, see the example config specification.
Attributes
----------
TODO
"""
# Component name
compID = "galactic/freefree"
name = "Galactic free-free"
def __init__(self, configs):
self.configs = configs
self._set_configs()
self.sky = get_sky(configs)
self.sky.add_header("CompID", self.compID, "Emission component ID")
self.sky.add_header("CompName", self.name, "Emission component")
self.sky.add_header("BUNIT", "K", "[Kelvin] Data unit")
self.sky.creator = __name__
def _set_configs(self):
"""
Load the configs and set the corresponding class attributes.
"""
comp = self.compID
self.halphamap_path = self.configs.get_path(comp+"/halphamap")
self.dustmap_path = self.configs.get_path(comp+"/dustmap")
self.f_dust = self.configs.getn(comp+"/dust_fraction")
self.halpha_abs_th = self.configs.getn(comp+"/halpha_abs_th") # [mag]
self.Te = self.configs.getn(comp+"/electron_temperature") # [K]
self.prefix = self.configs.getn(comp+"/prefix")
self.output_dir = self.configs.get_path(comp+"/output_dir")
#
self.filename_pattern = self.configs.getn("output/filename_pattern")
self.clobber = self.configs.getn("output/clobber")
self.frequencies = self.configs.frequencies # [MHz]
#
logger.info("Loaded and set up configurations")
def _load_maps(self):
"""
Load the Hα map, and 100-μm dust map.
"""
logger.info("Loading H[alpha] map ...")
self.halphamap = self.sky.open(self.halphamap_path)
logger.info("Loading dust map ...")
self.dustmap = self.sky.open(self.dustmap_path)
def _correct_dust_absorption(self):
"""
Correct the Hα map for dust absorption using the
100-μm dust map.
References: Ref.[dickinson2003],Eq.(1,3),Sec.(2.5)
"""
if hasattr(self, "_dust_corrected") and self._dust_corrected:
return
logger.info("Correct H[alpha] map for dust absorption")
logger.info("Effective dust fraction: {0}".format(self.f_dust))
# Mask the regions where the true Halpha absorption is uncertain.
# When the dust absorption goes rather large, the true Halpha
# absorption can not well determined.
# Corresponding dust absorption threshold, unit: [ MJy / sr ]
dust_abs_th = self.halpha_abs_th / 0.0462 / self.f_dust
logger.info("Dust absorption mask threshold: " +
"{0:.1f} MJy/sr ".format(dust_abs_th) +
"<-> H[alpha] absorption threshold: " +
"{0:.1f} mag".format(self.halpha_abs_th))
mask = (self.dustmap.data > dust_abs_th)
self.dustmap.data[mask] = np.nan
fp_mask = 100 * mask.sum() / self.dustmap.data.size
logger.warning("Dust map masked fraction: {0:.1f}%".format(fp_mask))
#
halphamap_corr = (self.halphamap.data *
10**(self.dustmap.data * 0.0185 * self.f_dust))
self.halphamap.data = halphamap_corr
self._dust_corrected = True
logger.info("Done dust absorption correction")
def _calc_factor_a(self, nu):
"""
Calculate the ratio factor a(Te, ν), which will be used to
convert the Halpha emission [Rayleigh] to free-free emission
brightness temperature [K].
Parameters
----------
nu : float
The frequency where to calculate the factor a(nu).
Unit: [MHz]
Returns
-------
a : float
The factor for Hα to free-free conversion.
References: [dickinson2003],Eq.(8)
"""
term1 = 0.183 * nu**0.1 * self.Te**(-0.15)
term2 = 3.91 - np.log(nu) + 1.5*np.log(self.Te)
a = term1 * term2
return a
def _calc_halpha_to_freefree(self, nu):
"""
Calculate the conversion factor between Hα emission [Rayleigh]
to radio free-free emission [K] at frequency ν [MHz].
Parameters
----------
nu : float
The frequency where to calculate the conversion factor.
Unit: [MHz]
Returns
-------
h2f : float
The conversion factor between Hα emission and free-free emission.
References: [dickinson2003],Eq.(11)
NOTE: The above referred formula has a superfluous "10^3" term!
"""
a = self._calc_factor_a(nu)
h2f = 38.86 * a * nu**(-2.1) * 10**(290/self.Te) * self.Te**0.667
return h2f
def _outfilepath(self, frequency, **kwargs):
"""
Generate the path/filename to the output file for writing
the simulate sky images.
Parameters
----------
frequency : float
The frequency of the output sky image.
Unit: [MHz]
Returns
-------
filepath : str
The generated filepath for the output sky file.
"""
filename = self.filename_pattern.format(
prefix=self.prefix, frequency=frequency, **kwargs)
filepath = os.path.join(self.output_dir, filename)
return filepath
def preprocess(self):
"""
Perform the preparation procedures for the final simulations.
Attributes
----------
_preprocessed : bool
This attribute presents and is ``True`` after the preparation
procedures are performed, which indicates that it is ready to
do the subsequent simulations.
"""
if hasattr(self, "_preprocessed") and self._preprocessed:
return
logger.info("{name}: preprocessing ...".format(name=self.name))
self._load_maps()
self._correct_dust_absorption()
self._preprocessed = True
def simulate_frequency(self, frequency):
"""
Simulate the free-free map at the specified frequency.
Parameters
----------
frequency : float
The frequency where to simulate the emission map.
Unit: [MHz]
Returns
-------
sky : `~SkyBase`
The simulated sky image as a new sky instance.
"""
logger.info("Simulating {name} map at {freq:.2f} [MHz] ...".format(
name=self.name, freq=frequency))
sky = self.sky.copy()
sky.frequency = frequency
ratio_K_R = self._calc_halpha_to_freefree(frequency)
sky.data = self.halphamap * ratio_K_R
logger.info("Done simulate map at %.2f [MHz]." % frequency)
return sky
def simulate(self, frequencies=None):
"""
Simulate the emission maps.
Parameters
----------
frequencies : float, or list[float]
The frequencies where to simulate the emission map.
Unit: [MHz]
Default: None (i.e., use ``self.frequencies``)
Returns
-------
skyfiles : list[str]
List of the filepath to the written sky files
"""
if frequencies is None:
frequencies = self.frequencies
else:
frequencies = np.array(frequencies, ndmin=1)
logger.info("Simulating {name} ...".format(name=self.name))
skyfiles = []
for freq in frequencies:
sky = self.simulate_frequency(freq)
outfile = self._outfilepath(frequency=freq)
sky.write(outfile)
skyfiles.append(outfile)
logger.info("Done simulate {name}!".format(name=self.name))
return skyfiles
def postprocess(self):
"""Perform the post-simulation operations before the end."""
logger.info("{name}: postprocessing ...".format(name=self.name))
logger.info("^_^ nothing to do :-)")
|