1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
|
# Copyright (c) 2016-2017 Weitian LI <weitian@aaronly.me>
# MIT license
"""
Galactic supernova remnants (SNRs) emission simulations.
"""
import os
import logging
from datetime import datetime, timezone
import numpy as np
from astropy.io import fits
from astropy.coordinates import SkyCoord
import astropy.units as au
import pandas as pd
from ..sky import get_sky
from ..utils.wcs import make_wcs
from ..utils.convert import Fnu_to_Tb_fast
from ..utils.grid import make_ellipse
from ..utils.units import UnitConversions as AUC
logger = logging.getLogger(__name__)
class SuperNovaRemnants:
"""
Simulate the Galactic supernova remnants emission.
The simulation follows the method adopted by [Jelic2008]_, which is
based on the Galactic SNRs catalog maintained by *D. A. Green*
[Green2014]_ and [GreenSNRDataWeb]_, which contains 294 SNRs (2014-May).
However, some SNRs have incomplete data which are excluded, while
some SNRs with uncertain properties are currently kept.
Every SNR is simulated as an *ellipse* of *uniform brightness* on
a local coordinate grid with relatively higher resolution compared
to the output HEALPix map, which is then mapped to the output HEALPix
map by down-sampling.
Parameters
----------
configs : `ConfigManager`
A `ConfigManager` instance containing default and user configurations.
For more details, see the example configuration specifications.
Attributes
----------
???
References
----------
.. [Jelic2008]
Jelić, V. et al.,
"Foreground simulations for the LOFAR-epoch of reionization experiment",
2008, MNRAS, 389, 1319-1335,
http://adsabs.harvard.edu/abs/2008MNRAS.389.1319J
.. [Green2014]
Green, D. A.,
"A catalogue of 294 Galactic supernova remnants",
2014, Bulletin of the Astronomical Society of India, 42, 47-58,
http://adsabs.harvard.edu/abs/2014BASI...42...47G
.. [GreenSNRDataWeb]
A Catalogue of Galactic Supernova Remnants
http://www.mrao.cam.ac.uk/surveys/snrs/
"""
# Component name
name = "Galactic SNRs"
def __init__(self, configs):
self.configs = configs
self.sky = get_sky(configs)
self._set_configs()
def _set_configs(self):
"""Load the configs and set the corresponding class attributes."""
comp = "galactic/snr"
self.catalog_path = self.configs.get_path(comp+"/catalog")
self.catalog_outfile = self.configs.get_path(comp+"/catalog_outfile")
self.resolution = self.configs.getn(comp+"/resolution") # [ arcsec ]
self.prefix = self.configs.getn(comp+"/prefix")
self.save = self.configs.getn(comp+"/save")
self.output_dir = self.configs.get_path(comp+"/output_dir")
#
self.filename_pattern = self.configs.getn("output/filename_pattern")
self.use_float = self.configs.getn("output/use_float")
self.checksum = self.configs.getn("output/checksum")
self.clobber = self.configs.getn("output/clobber")
self.freq_unit = au.Unit(self.configs.getn("frequency/unit"))
logger.info("Loaded and set up configurations")
def _load_catalog(self):
"""
Load the Galactic SNRs catalog data.
Catalog columns:
* glon, glat : SNR coordinate, Galactic coordinate, [deg]
* size_major, size_minor : SNR angular sizes; major and minor axes
of the ellipse fitted to the SNR, or the diameter of the fitted
circle if the SNR is nearly circular;
originally in [arcmin], converted to [arcsec]
* flux : Flux density at 1 GHz, [Jy]
"""
self.catalog = pd.read_csv(self.catalog_path)
nrow, ncol = self.catalog.shape
logger.info("Loaded SNRs catalog data from: {0}".format(
self.catalog_path))
logger.info("SNRs catalog data: {0} objects, {1} columns".format(
nrow, ncol))
# The flux densities are given at 1 GHz
self.catalog_flux_freq = (1.0*au.GHz).to(self.freq_unit).value
# Convert ``size_major`` and ``size_minor`` from unit [arcmin]
# to [arcsec]
self.catalog["size_major"] *= AUC.arcmin2arcsec
self.catalog["size_minor"] *= AUC.arcmin2arcsec
def _save_catalog_inuse(self):
"""
Save the effective/inuse SNRs catalog data to a CSV file.
NOTE
----
- Only the effective/inuse SNRs are saved (i.e., without the ones
that are filtered out).
- Also save the simulated rotation column.
- The unnecessary columns are striped.
"""
if self.catalog_outfile is None:
logger.warning("Catalog output file not set; skipped!")
return
# Create directory if necessary
dirname = os.path.dirname(self.catalog_outfile)
if not os.path.exists(dirname):
os.mkdir(dirname)
logger.info("Created directory: {0}".format(dirname))
# Save catalog data
colnames = ["name", "glon", "glat", "ra", "dec",
"size_major", "size_minor", "flux",
"specindex", "rotation"]
if os.path.exists(self.catalog_outfile):
if self.clobber:
os.remove(self.catalog_outfile)
logger.warning("Removed existing catalog file: {0}".format(
self.catalog_outfile))
else:
raise OSError("Output file already exists: {0}".format(
self.catalog_outfile))
self.catalog.to_csv(self.catalog_outfile, columns=colnames,
header=True, index=False)
logger.info("Saved SNRs catalog in use to: %s" % self.catalog_outfile)
def _filter_catalog(self):
"""
Filter the catalog data to remove the objects with incomplete data,
as well as the SNRs lying outside the sky coverage.
The following cases are filtered out:
- Missing angular size
- Missing flux density data
- Missing spectral index value
NOTE
----
The objects with uncertain data are currently kept.
"""
cond1 = pd.isnull(self.catalog["size_major"])
cond2 = pd.isnull(self.catalog["size_minor"])
cond3 = pd.isnull(self.catalog["flux"])
cond4 = pd.isnull(self.catalog["specindex"])
cond_keep = ~(cond1 | cond2 | cond3 | cond4)
n_remain = cond_keep.sum()
n_delete = len(cond_keep) - n_remain
self.catalog = self.catalog[cond_keep]
logger.info("SNRs catalog: filtered out due to incomplete data: " +
"{0:d} objects".format(n_delete))
# Filter out the SNRs lying outside the sky region (e.g., a patch)
skycoords = SkyCoord(l=self.catalog["glon"], b=self.catalog["glat"],
frame="galactic", unit="deg")
inside = self.sky.contains(skycoords)
n_remain = inside.sum()
n_delete = len(inside) - n_remain
self.catalog = self.catalog[inside]
# Drop the index
self.catalog.reset_index(drop=True, inplace=True)
self.catalog_filtered = True
logger.info("SNRs catalog: filtered out due to sky coverage: " +
"{0:d} objects".format(n_delete))
logger.info("Filtered SNRs catalog: {0} objects".format(n_remain))
if n_remain == 0:
raise RuntimeError("NO remaining SNRs within simulation sky! " +
"Check the catalog or disable this component.")
def _add_random_rotation(self):
"""
Add random rotation angles for each SNR as column "rotation"
within the catalog data frame.
The rotation angles are uniformly distributed within [0, 360).
The rotation happens on the spherical surface, i.e., not with respect
to the line of sight, but to the Galactic frame coordinate axes.
"""
num = len(self.catalog)
angles = np.random.uniform(low=0.0, high=360.0, size=num)
rotation = pd.Series(data=angles, name="rotation")
self.catalog["rotation"] = rotation
logger.info("Added random rotation angles as the 'rotation' column")
def _calc_Tb(self, flux, specindex, frequency, size):
"""
Calculate the brightness temperature at requested frequency
by assuming a power-law spectral shape.
Parameters
----------
flux : float
The flux density (unit: [ Jy ]) at the reference
frequency (i.e., `self.catalog_flux_freq`).
specindex : float
The spectral index of the power-law spectrum
frequency : float
The frequency (unit: [ MHz ]) where the brightness
temperature requested.
size : 2-float tuple
The (major, minor) axes of the SNR (unit: [ deg ]).
The order of major and minor can be arbitrary.
Returns
-------
Tb : float
Brightness temperature at the requested frequency, unit [ K ]
NOTE
----
The power-law spectral shape is assumed for *flux density* other
than the *brightness temperature*.
Therefore, the flux density at the requested frequency should first
be calculated by extrapolating the spectrum, then convert the flux
density to derive the brightness temperature.
"""
freq_ref = self.catalog_flux_freq # [ MHz ]
Fnu = flux * (frequency / freq_ref) ** (-specindex) # [ Jy ]
omega = size[0] * size[1] # [ deg^2 ]
pixelarea = (self.sky.pixelsize * AUC.arcsec2deg) ** 2 # [ deg^2 ]
if omega < pixelarea:
# The object is smaller than a pixel, so round up to a pixel area
omega = pixelarea
Tb = Fnu_to_Tb_fast(Fnu, omega, frequency)
return Tb
def _simulate_templates(self):
"""
Simulate the template images/maps for each SNR, and cache these
templates within this object.
The template images/maps have values of (or approximate) ones for
these effective pixels, excluding the pixels corresponding to the
edges of original rotated ellipse, which may have values of
significantly less than 1 due to the rotation.
Therefore, simulating the sky map of one SNR at a requested
frequency is simply multiplying these cached templates by the
calculated brightness temperature (Tb) at that frequency.
Furthermore, the final output sky map of all SNRs are just additions
of all the maps of each SNR.
Attributes
----------
templates : dict
A dictionary containing the simulated templates for each SNR.
The dictionary keys are the names (`self.catalog["name"]`)
of the SNRs, and the values are `(idx, val)` tuples with
`idx` the indexes of effective image pixels and `hpval` the
values of the corresponding pixels.
e.g.,
``{ name1: (idx1, val1), name2: (idx2, val2), ... }``
"""
templates = {}
logger.info("Simulating sky template for each SNR ...")
for row in self.catalog.itertuples():
name = row.name
logger.debug("Simulate sky template for SNR: {0}".format(name))
gcenter = (row.glon, row.glat) # [ deg ]
radii = (int(np.ceil(row.size_major * 0.5 / self.resolution)),
int(np.ceil(row.size_minor * 0.5 / self.resolution)))
rmax = max(radii)
pcenter = (rmax, rmax)
image = make_ellipse(pcenter, radii, row.rotation)
wcs = make_wcs(center=gcenter, size=image.shape,
pixelsize=self.resolution,
frame="Galactic", projection="CAR")
idx, val = self.sky.reproject_from(image, wcs, squeeze=True)
templates[name] = (idx, val)
logger.info("Done simulate {0} SNR templates".format(len(templates)))
self.templates = templates
def _simulate_single(self, data, frequency):
"""
Simulate one single SNR at the specified frequency.
Parameters
----------
data : namedtuple
The data of the SNR to be simulated, given in a ``namedtuple``
object, from which can get the required properties by
``data.key``.
e.g., elements of `self.catalog.itertuples()`
frequency : float
The simulation frequency (unit: `self.freq_unit`).
Returns
-------
idx : 1D `~numpy.ndarray`
The indexes of the effective map pixels for the SNR.
val : 1D `~numpy.ndarray`
The values (i.e., brightness temperature) of each map
pixel with respect to the above indexes.
See Also
--------
`self._simulate_template()` for more detailed description.
"""
name = data.name
idx, val = self.templates[name]
# Calculate the brightness temperature
flux = data.flux
specindex = data.specindex
size = (data.size_major/60.0, data.size_minor/60.0) # [ deg ]
Tb = self._calc_Tb(flux, specindex, frequency, size)
val = val * Tb
return (idx, val)
def _make_filepath(self, **kwargs):
"""
Make the path of output file according to the filename pattern
and output directory loaded from configurations.
"""
data = {
"prefix": self.prefix,
}
data.update(kwargs)
filename = self.filename_pattern.format(**data)
filepath = os.path.join(self.output_dir, filename)
return filepath
def _make_header(self):
"""
Make the header with detail information (e.g., parameters and
history) for the simulated products.
"""
header = fits.Header()
header["COMP"] = (self.name, "Emission component")
header["BUNIT"] = ("K", "data unit is Kelvin")
header["CREATOR"] = (__name__, "File creator")
# TODO:
history = []
comments = []
for hist in history:
header.add_history(hist)
for cmt in comments:
header.add_comment(cmt)
self.header = header
logger.info("Created FITS header")
def output(self, skymap, frequency):
"""
Write the simulated free-free map to disk with proper header
keywords and history.
Returns
-------
outfile : str
The (absolute) path to the output sky map file.
"""
outfile = self._make_filepath(frequency=frequency)
if not hasattr(self, "header"):
self._make_header()
header = self.header.copy()
header["FREQ"] = (frequency, "Frequency [ MHz ]")
header["DATE"] = (
datetime.now(timezone.utc).astimezone().isoformat(),
"File creation date"
)
if self.use_float:
skymap = skymap.astype(np.float32)
sky = self.sky.copy()
sky.data = skymap
sky.header = header
sky.write(outfile, clobber=self.clobber, checksum=self.checksum)
return outfile
def preprocess(self):
"""
Perform the preparation procedures for the final simulations.
Attributes
----------
_preprocessed : bool
This attribute presents and is ``True`` after the preparation
procedures are performed, which indicates that it is ready to
do the final simulations.
"""
if hasattr(self, "_preprocessed") and self._preprocessed:
return
#
logger.info("{name}: preprocessing ...".format(name=self.name))
self._load_catalog()
self._filter_catalog()
self._add_random_rotation()
# Simulate the template maps for each SNR
self._simulate_templates()
#
self._preprocessed = True
def simulate_frequency(self, frequency):
"""
Simulate the sky map of all Galactic SNRs emission at the specified
frequency.
Parameters
----------
frequency : float
The simulation frequency (unit: `self.freq_unit`).
Returns
-------
skymap_f : 1D/2D `~numpy.ndarray`
The sky map at the input frequency.
filepath : str
The (absolute) path to the output sky map if saved,
otherwise ``None``.
See Also
--------
`self._simulate_template()` for more detailed description.
"""
self.preprocess()
#
logger.info("Simulating {name} map at {freq} ({unit}) ...".format(
name=self.name, freq=frequency, unit=self.freq_unit))
skymap_f = np.zeros(self.sky.shape)
for row in self.catalog.itertuples():
index, value = self._simulate_single(row, frequency)
skymap_f[index] += value
#
if self.save:
filepath = self.output(skymap_f, frequency)
else:
filepath = None
return (skymap_f, filepath)
def simulate(self, frequencies):
"""
Simulate the sky maps of all Galactic SNRs emission at every
specified frequency.
Parameters
----------
frequency : list[float]
List of frequencies (unit: `self.freq_unit`) where the
simulation performed.
Returns
-------
skymaps : list[1D `~numpy.ndarray`]
List of sky maps at each frequency.
paths : list[str]
List of (absolute) path to the output sky maps.
"""
skymaps = []
paths = []
for f in np.array(frequencies, ndmin=1):
skymap_f, outfile = self.simulate_frequency(f)
skymaps.append(skymap_f)
paths.append(outfile)
return (skymaps, paths)
def postprocess(self):
"""Perform the post-simulation operations before the end."""
logger.info("{name}: postprocessing ...".format(name=self.name))
# Save the catalog actually used in the simulation
self._save_catalog_inuse()
|