aboutsummaryrefslogtreecommitdiffstats
path: root/fg21sim/galactic/synchrotron.py
blob: d05292f14244e906a80f25c8384a9b5cb6bfc839 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
# Copyright (c) 2016 Weitian LI <liweitianux@live.com>
# MIT license

"""
Diffuse Galactic synchrotron emission (unpolarized) simulations.
"""

import os
from datetime import datetime, timezone

import numpy as np
from astropy.io import fits
import astropy.units as au
import healpy as hp


class Synchrotron:
    """Simulate the diffuse Galactic synchrotron emission based on an
    existing template.

    Parameters
    ----------
    configs : ConfigManager object
        An `ConfigManager` object contains default and user configurations.
        For more details, see the example config specification.

    Attributes
    ----------
    ???

    References
    ----------
    ???
    """
    def __init__(self, configs):
        self.configs = configs
        self._set_configs()
        self._load_template()
        self._load_indexmap()

    def _set_configs(self):
        """Load the configs and set the corresponding class attributes."""
        self.template_path = self.configs.getn(
            "galactic/synchrotron/template")
        self.template_freq = self.configs.getn(
            "galactic/synchrotron/template_freq")
        self.template_unit = au.Unit(
            self.configs.getn("galactic/synchrotron/template_unit"))
        self.indexmap_path = self.configs.getn(
            "galactic/synchrotron/indexmap")
        self.smallscales = self.configs.getn(
            "galactic/synchrotron/add_smallscales")
        # output
        self.prefix = self.configs.getn("galactic/synchrotron/prefix")
        self.save = self.configs.getn("galactic/synchrotron/save")
        self.output_dir = self.configs.getn("galactic/synchrotron/output_dir")
        self.filename_pattern = self.configs.getn("output/filename_pattern")
        self.use_float = self.configs.getn("output/use_float")
        self.clobber = self.configs.getn("output/clobber")
        # common
        self.nside = self.configs.getn("common/nside")
        self.lmin = self.configs.getn("common/lmin")
        self.lmax = self.configs.getn("common/lmax")
        # unit of the frequency
        self.freq_unit = au.Unit(self.configs.getn("frequency/unit"))

    def _load_template(self):
        """Load the template map"""
        self.template, header = hp.read_map(self.template_path,
                                            nest=False, h=True, verbose=False)
        self.template_header = fits.header.Header(header)
        self.template_nside = self.template_header["NSIDE"]
        self.template_ordering = self.template_header["ORDERING"]

    def _load_indexmap(self):
        """Load the spectral index map"""
        self.indexmap, header = hp.read_map(self.indexmap_path,
                                            nest=False, h=True, verbose=False)
        self.indexmap_header = fits.header.Header(header)
        self.indexmap_nside = self.indexmap_header["NSIDE"]
        self.indexmap_ordering = self.indexmap_header["ORDERING"]

    def _process_template(self):
        """Upgrade/downgrade the template to have the same Nside as
        requested by the output."""
        if self.nside == self.template_nside:
            self.hpmap = self.template.copy()
        else:
            # upgrade/downgrade the resolution
            self.hpmap = hp.ud_grade(self.template, nside_out=self.nside)

    def _process_indexmap(self):
        """Upgrade/downgrade the spectral index map to have the same
        Nside as requested by the output."""
        if self.nside == self.indexmap_nside:
            self.hpmap_index = self.indexmap.copy()
        else:
            # upgrade/downgrade the resolution
            self.hpmap_index = hp.ud_grade(self.indexmap, nside_out=self.nside)

    def _add_smallscales(self):
        """Add fluctuations on small scales to the template map.

        XXX/TODO:
        * Support using different models.
        * This should be extensible/plug-able, e.g., a separate module
          and allow easily add new models for use.

        References
        ----------
        [1] M. Remazeilles et al. 2015, MNRAS, 451, 4311-4327
            "An improved source-subtracted and destriped 408-MHz all-sky map"
            Sec. 4.2: Small-scale fluctuations
        """
        if not self.smallscales:
            return
        # To add small scale fluctuations
        # model: Remazeilles15
        gamma = -2.703  # index of the power spectrum between l [30, 90]
        sigma_temp = 56  # original beam resolution of the template [ arcmin ]
        alpha = 0.0599
        beta = 0.782
        # angular power spectrum of the Gaussian random field
        ell = np.arange(self.lmax+1).astype(np.int)
        cl = np.zeros(ell.shape)
        ell_idx = ell >= self.lmin
        cl[ell_idx] = (ell[ell_idx] ** gamma *
                       1.0 - np.exp(-ell[ell_idx]**2 * sigma_temp**2))
        cl[ell < self.lmin] = cl[self.lmin]
        # generate a realization of the Gaussian random field
        gss = hp.synfast(cls=cl, nside=self.nside)
        # whiten the Gaussian random field
        gss = (gss - gss.mean()) / gss.std()
        self.hpmap_smallscales = alpha * gss * self.hpmap**beta
        self.hpmap += self.hpmap_smallscales

    def _transform_frequency(self, frequency):
        """Transform the template map to the requested frequency,
        according to the spectral model and using an spectral index map.
        """
        hpmap_f = (self.hpmap *
                   (frequency / self.template_freq) ** self.hpmap_index)
        return hpmap_f

    def _make_header(self):
        """Make the header with detail information (e.g., parameters and
        history) for the simulated products.
        """
        header = fits.Header()
        header["COMP"] = ("Galactic synchrotron (unpolarized)",
                          "Emission component")
        # TODO:
        history = []
        comments = []
        for hist in history:
            header.add_history(hist)
        for cmt in comments:
            header.add_comment(cmt)
        self.header = header

    def output(self, hpmap, frequency):
        """Write the simulated synchrotron map to disk with proper
        header keywords and history.
        """
        FITS_COLUMN_FORMATS = {
            np.dtype("float32"): "E",
            np.dtype("float64"): "D",
        }
        #
        filename = self.filename_pattern.format(prefix=self.prefix,
                                                frequency=frequency)
        filepath = os.path.join(self.output_dir, filename)
        if not hasattr(self, "header"):
            self._make_header()
        header = self.header.copy()
        header["FREQ"] = (frequency, "Frequency [ MHz ]")
        header["DATE"] = (
            datetime.now(timezone.utc).astimezone().isoformat(),
            "File creation date"
        )
        if self.use_float:
            hpmap = hpmap.astype(np.float32)
        hdu = fits.BinTableHDU.from_columns([
            fits.Column(name="I", array=hpmap,
                        format=FITS_COLUMN_FORMATS.get(hpmap.dtype))
        ], header=header)
        hdu.writeto(filepath, clobber=self.clobber, checksum=True)

    def simulate(self, frequencies):
        """Simulate the synchrotron map at the specified frequencies."""
        if not hasattr(self, "hpmap"):
            self._process_template()
            self._add_smallscales()
        if not hasattr(self, "hpmap_index"):
            self._process_indexmap()
        #
        hpmaps = []
        for f in np.array(frequencies, ndmin=1):
            hpmap_f = self._transform_frequency(f)
            hpmaps.append(hpmap_f)
            if self.save:
                self.output(hpmap_f, f)
        return hpmaps