1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
|
# Copyright (c) 2017 Weitian LI <weitian@aaronly.me>
# MIT license
"""
Generic simulation sky supporting both sky patch and HEALPix all-sky
maps.
"""
import os
import logging
import copy
import numpy as np
from scipy import ndimage
from astropy.io import fits
import astropy.units as au
from astropy.coordinates import SkyCoord
from regions import PixCoord, RectanglePixelRegion
from reproject import reproject_interp, reproject_to_healpix
import healpy as hp
from .utils.wcs import make_wcs
from .utils.fits import read_fits_healpix, write_fits_healpix
from .utils.units import UnitConversions as AUC
logger = logging.getLogger(__name__)
class SkyPatch:
"""
Support reading & writing FITS file of sky patches.
NOTE/XXX
--------
Currently just use ``CAR`` (Cartesian) sky projection, i.e.,
assuming a flat sky!
Parameters
----------
size : (xsize, ysize) tuple
The (pixel) dimensions of the (output) sky patch.
If the input sky has a different size, then it will be *scaled*
to match this output size.
NOTE: Due to the FITS using Fortran ordering, while Python/numpy
using C ordering, therefore, the read in image/data array
has shape (ysize, xsize).
pixelsize : float
The pixel size of the sky patch, will be used to determine
the sky coordinates.
Unit: [arcsec]
center : (ra, dec) tuple, optional
The (R.A., Dec.) coordinate of the sky patch center.
Unit: [deg]
infile : str, optional
The path to the input sky patch
frequency : float, optional
The frequency of the input sky path
Unit: [MHz]
Attributes
----------
type_ : str, "patch" or "healpix"
The type of this sky map
data : 1D `numpy.ndarray`
The flattened 1D array of map data
NOTE: The 2D image is flattened to 1D, making it easier to be
manipulated in a similar way as the HEALPix map.
shape : int tuple, (nrow*ncol, )
The shape of the flattened image array
NOTE: nrow=height, ncol=width
"""
type_ = "patch"
# Input sky patch and its frequency [ MHz ]
infile = None
frequency = None
# Sky data; should be a 1D ``numpy.ndarray`` (i.e., flattened)
data = None
# Coordinates of each pixel
coordinates = None
def __init__(self, size, pixelsize, center=(0.0, 0.0),
infile=None, frequency=None):
self.xcenter, self.ycenter = center
self.xsize, self.ysize = size
self.pixelsize = pixelsize
if infile is not None:
self.read(infile, frequency)
@property
def area(self):
"""
The sky coverage of this patch [ deg^2 ]
XXX/FIXME
---------
Assumed a flat sky!
Consider the spherical coordination and WCS sky projection!!
"""
ps = self.pixelsize * AUC.arcsec2deg # [deg]
size = self.xsize * self.ysize
return size * ps**2
@property
def size(self):
return (self.xsize, self.ysize)
@property
def shape(self):
if self.data is not None:
return self.data.shape
else:
return (self.ysize * self.xsize, )
@property
def center(self):
return (self.xcenter, self.ycenter)
def read(self, infile, frequency=None):
"""
Read input sky data from file.
Parameters
----------
infile : str
The path to the input sky patch
frequency : float, optional
The frequency of the sky patch;
Unit: [MHz]
"""
self.infile = infile
if frequency is not None:
self.frequency = frequency
with fits.open(infile) as f:
self.data = f[0].data
self.header = f[0].header
self.ysize_in, self.xsize_in = self.data.shape
logger.info("Read sky patch from: %s (%dx%d)" %
(infile, self.xsize_in, self.ysize_in))
if (self.xsize_in != self.xsize) or (self.ysize_in != self.ysize):
logger.warning("Scale input sky patch to size %dx%d" %
(self.xsize, self.ysize))
zoom = (self.ysize/self.ysize_in, self.xsize/self.xsize_in)
self.data = ndimage.zoom(self.data, zoom=zoom, order=1)
# Flatten the image
self.data = self.data.flatten()
logger.info("Flattened the image to an 1D array")
def load(self, infile, frequency=None):
"""
Make a new copy of this instance, then read the input sky patch
and return the loaded new instance.
Returns
-------
A new copy of this instance with the given sky patch loaded.
"""
sky = self.copy()
sky.read(infile=infile, frequency=frequency)
return sky
def copy(self):
"""
Return a copy of this instance.
"""
return copy.deepcopy(self)
def write(self, outfile, clobber=False, checksum=True):
"""
Write current data to file.
"""
outdir = os.path.dirname(outfile)
if outdir and (not os.path.exists(outdir)):
os.makedirs(outdir)
logger.info("Created output directory: %s" % outdir)
image = self.data.reshape(self.ysize, self.xsize)
if hasattr(self, "header"):
header = self.header.copy(strip=True)
wcs_header = self.wcs.to_header()
header.extend(wcs_header, update=True)
header["PIXSIZE"] = (self.pixelsize, "Pixel size [arcsec]")
header["RA0"] = (self.center[0], "R.A. of patch center [deg]")
header["DEC0"] = (self.center[1], "Dec. of patch center [deg]")
hdu = fits.PrimaryHDU(data=image, header=header)
hdu.writeto(outfile, clobber=clobber, checksum=checksum)
logger.info("Write sky map to file: %s" % outfile)
@property
def wcs(self):
"""
The WCS header with sky projection information, for sky <->
pixel coordinate(s) conversion.
NOTE/XXX
--------
Currently just use the `CAR` (Cartesian) projection,
i.e., assuming a flat sky.
"""
w = make_wcs(center=(self.xcenter, self.ycenter),
size=(self.xsize, self.ysize),
pixelsize=self.pixelsize,
frame="ICRS", projection="CAR")
return w
def contains(self, skycoord):
"""
Check whether the given (list of) sky coordinate(s) falls
inside this sky patch (region).
Parameters
----------
skycoord : `~astropy.coordinate.SkyCoord` or (lon, lat) tuple
The (list of) sky coordinate(s) to check, or the (list of)
longitudes and latitudes of sky coordinates [ deg ]
Returns
-------
inside : bool
(list of) boolean values indicating whether the given
sky coordinate(s) is inside this sky patch.
"""
if not isinstance(skycoord, SkyCoord):
lon, lat = skycoord
skycoord = SkyCoord(lon, lat, unit=au.deg)
wcs = self.wcs
pixcoord = PixCoord.from_sky(skycoord, wcs=wcs)
center = PixCoord(x=self.xcenter, y=self.ycenter)
region = RectanglePixelRegion(center=center,
width=self.xsize, height=self.ysize)
return region.contains(pixcoord)
def reproject_from(self, data, wcs, squeeze=False, eps=1e-5):
"""
Reproject the given image/data together with WCS information
onto the grid of this sky.
Parameters
----------
data : 2D float `~numpy.ndarray`
The input data/image to be reprojected
wcs : `~astropy.wcs.WCS`
The WCS information of the input data/image (naxis=2)
squeeze : bool, optional
Whether to squeeze the reprojected data to only keep
the pixels greater than a small positive value specified
by parameter ``eps``.
Default: False
eps : float, optional
The small positive value to specify the squeeze threshold.
Default: 1e-5
Returns
-------
If ``squeeze=True``, then returns tuple of ``(indexes, values)``,
otherwise, returns the reprojected image/data array.
indexes : 1D int `~numpy.ndarray`
The indexes of the pixels with positive values.
values : 1D float `~numpy.ndarray`
The values of the above pixels.
reprojected : 1D `~numpy.ndarray`
The reprojected data/image with same shape of this sky,
i.e., ``self.data``.
"""
wcs_out = self.wcs
shape_out = (self.ysize, self.xsize)
reprojected, __ = reproject_interp(
input_data=(data, wcs), output_projection=wcs_out,
shape_out=shape_out)
reprojected = reprojected.flatten()
if squeeze:
with np.errstate(invalid="ignore"):
indexes = reprojected > eps
values = reprojected[indexes]
return (indexes, values)
else:
return reprojected
class SkyHealpix:
"""
Support the HEALPix all-sky map.
Parameters
----------
nside : int
The pixel resolution of HEALPix (must be power of 2)
infile : str, optional
The path to the input sky patch
frequency : float, optional
The frequency of the input sky path
Unit: [MHz]
Attributes
----------
shape : int tuple, (npix,)
The shape (i.e., length) of the HEALPix array
pixelsize : float
The pixel size of the HEALPix map
Unit: [arcsec]
"""
type_ = "healpix"
# Input sky patch and its frequency [ MHz ]
infile = None
frequency = None
# Sky data; should be a `~numpy.ndarray`
data = None
# Coordinates of each pixel
coordinates = None
def __init__(self, nside, infile=None, frequency=None):
self.nside = nside
if infile is not None:
self.read(infile, frequency)
@property
def area(self):
"""
The sky coverage of this HEALPix map, i.e., all sky = 4π,
Unit: [deg^2]
"""
return 4*np.pi * np.rad2deg(1)**2
@property
def shape(self):
if self.data is not None:
return self.data.shape
else:
return (hp.nside2npix(self.nside), )
@property
def pixelsize(self):
ps = hp.nside2resol(self.nside, arcmin=True)
ps *= AUC.arcmin2arcsec
return ps
def read(self, infile, frequency=None):
"""
Read input HEALPix all-sky map.
Parameters
----------
infile : str
The path to the input HEALPix all-sky map.
frequency : float, optional
The frequency of the sky patch;
Unit: [MHz]
"""
self.infile = infile
if frequency is not None:
self.frequency = frequency
self.data, self.header = read_fits_healpix(infile)
self.nside_in = self.header["NSIDE"]
logger.info("Read HEALPix sky map from: {0} (Nside={1})".format(
infile, self.nside_in))
if self.nside_in != self.nside:
self.data = hp.ud_grade(self.data, nside_out=self.nside)
logger.warning("Upgrade/downgrade sky map from Nside " +
"{0} to {1}".format(self.nside_in, self.nside))
def load(self, infile, frequency=None):
"""
Make a new copy of this instance, then read the input sky map
and return the loaded new instance.
Returns
-------
A new copy of this instance with the given sky map loaded.
"""
sky = self.copy()
sky.read(infile=infile, frequency=frequency)
return sky
def copy(self):
"""
Return a copy of this instance.
"""
return copy.deepcopy(self)
def write(self, outfile, clobber=False, checksum=True):
"""
Write current data to file.
"""
outdir = os.path.dirname(outfile)
if outdir and (not os.path.exists(outdir)):
os.makedirs(outdir)
logger.info("Created output directory: %s" % outdir)
if hasattr(self, "header"):
header = self.header
write_fits_healpix(outfile, self.data, header=header,
clobber=clobber, checksum=checksum)
logger.info("Write sky map to file: %s" % outfile)
def contains(self, skycoord):
"""
Shim method to be consistent with ``SkyPatch``.
Always returns ``True``, since the HEALPix map covers all sky.
"""
if skycoord.isscalar:
return True
else:
return np.ones(shape=len(skycoord), dtype=np.bool)
def reproject_from(self, data, wcs, squeeze=False):
"""
Reproject the given image/data together with WCS information
onto the grid of this sky.
Parameters
----------
data : 2D float `~numpy.ndarray`
The input data/image to be reprojected
wcs : `~astropy.wcs.WCS`
The WCS information of the input data/image (naxis=2)
squeeze : bool, optional
Whether to squeeze the reprojected data to only keep
the positive pixels.
Returns
-------
If ``squeeze=True``, then returns tuple of ``(indexes, values)``,
otherwise, returns the reprojected image/data array.
indexes : 1D int `~numpy.ndarray`
The indexes of the pixels with positive values.
values : 1D float `~numpy.ndarray`
The values of the above pixels.
reprojected : 1D `~numpy.ndarray`
The reprojected data/image with same shape of this sky,
i.e., ``self.data.shape``.
"""
eps = 1e-5
reprojected, __ = reproject_to_healpix(
input_data=(data, wcs), coord_system_out="galactic",
nested=False, nside=self.nside)
if squeeze:
with np.errstate(invalid="ignore"):
indexes = reprojected > eps
values = reprojected[indexes]
return (indexes, values)
else:
return reprojected
def get_sky(configs):
"""
Sky class factory function to support both the sky patch and
HEALPix all-sky map.
Parameters
----------
configs : ConfigManager object
An `ConfigManager` object contains default and user configurations.
For more details, see the example config specification.
"""
skytype = configs.getn("sky/type")
if skytype == "patch":
sec = "sky/patch"
xsize = configs.getn(sec+"/xsize")
ysize = configs.getn(sec+"/ysize")
xcenter = configs.getn(sec+"/xcenter")
ycenter = configs.getn(sec+"/ycenter")
pixelsize = configs.getn(sec+"/pixelsize")
return SkyPatch(size=(xsize, ysize), pixelsize=pixelsize,
center=(xcenter, ycenter))
elif skytype == "healpix":
sec = "sky/healpix"
nside = configs.getn(sec+"/nside")
return SkyHealpix(nside=nside)
else:
raise ValueError("unknown sky type: %s" % skytype)
|