1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
|
# Copyright (c) 2017 Weitian LI <weitian@aaronly.me>
# MIT license
"""
Generic simulation sky supporting both sky patch and HEALPix all-sky
maps.
"""
import os
import logging
import copy
import numpy as np
from scipy import ndimage
from astropy.io import fits
import astropy.units as au
from astropy.coordinates import SkyCoord
from regions import PixCoord, RectanglePixelRegion
from reproject import reproject_interp, reproject_to_healpix
import healpy as hp
from .utils.wcs import make_wcs
from .utils.fits import read_fits_healpix, write_fits_healpix
from .utils.random import spherical_uniform
from .utils.units import UnitConversions as AUC
logger = logging.getLogger(__name__)
class SkyBase:
"""
The base class for both the sky patch and HEALPix all-sky
map classes.
Attributes
----------
type_ : str
The type of the sky image
Values: ``patch`` or ``healpix``
data : `~numpy.ndarray`
The data array read from input sky image, or to be written into
output FITS file.
frequency_ : float
The frequency of the input/output sky image.
Unit: [MHz]
creator_ : str
The creator of the (output) sky image.
Default: ``__name__``
header_ : `~astropy.io.fits.Header`
The FITS header information of the input/output file.
float32_ : bool
Whether to use single/float32 data type to save the sky image?
Default: True
clobber_ : bool, optional
Whether to overwrite the existing output file.
Default: False
checksum_ : bool, optional
Whether to calculate the checksum data for the output
FITS file, which may cost some time.
Default: False
"""
def __init__(self, float32=True, clobber=False, checksum=False):
self.type_ = None
self.data = None
self.frequency_ = None
self.creator_ = __name__
self.header_ = fits.Header()
self.float32_ = float32
self.clobber_ = clobber
self.checksum_ = checksum
@property
def shape(self):
"""
Numpy array shape of the (current/output) sky data.
"""
return self.data.shape
@property
def frequency(self):
"""
The frequency of the sky image.
Unit: [MHz]
"""
return self.frequency_
@frequency.setter
def frequency(self, value):
"""
Set the frequency of the sky image.
Unit: [MHz]
"""
self.frequency_ = value
def copy(self):
"""
Return a (deep) copy of this instance.
"""
return copy.deepcopy(self)
def load(self, infile, frequency=None):
"""
Make a new *copy* of this instance, then read the given sky
image in and return the loaded new instance.
"""
sky = self.copy()
sky.read(infile=infile, frequency=frequency)
return sky
def read(self, infile, frequency=None):
"""
Read the given sky image into this instance.
Parameters
----------
infile : str
The path to the given input sky image.
frequency : float, optional
The frequency of the given sky image if applicable.
Unit: [MHz]
"""
raise NotImplementedError
def write(self, outfile, clobber=False, checksum=False):
"""
Write the sky image (with current data) into a FITS file.
Parameters
----------
outfile : str
The path/filename to the output FITS file.
clobber : bool, optional
Whether to overwrite the existing output file.
Default: False
checksum : bool, optional
Whether to calculate the checksum data for the output
FITS file, which may cost some time.
Default: False
"""
raise NotImplementedError
@property
def shape(self):
"""
Numpy array shape of the (current/output) sky data.
"""
raise NotImplementedError
@property
def area(self):
"""
Sky coverage of the sky.
Unit: [deg^2]
"""
raise NotImplementedError
@property
def pixelsize(self):
"""
Pixel size of the sky image.
Unit: [arcsec]
"""
raise NotImplementedError
def random_points(self, n=1):
"""
Generate uniformly distributed random points within the
sky image (coverage).
Parameters
----------
n : int, optional
The number of random points required.
Default: 1
Returns
-------
lon, lat : float, or 1D `~numpy.ndarray`
The longitudes and latitudes (in world coordinate)
generated.
Unit: [deg]
"""
raise NotImplementedError
class SkyPatch(SkyBase):
"""
Support reading & writing FITS file of sky patches.
NOTE/XXX
--------
Currently just use ``CAR`` (Cartesian) sky projection, i.e.,
assuming a flat sky!
Parameters
----------
size : (xsize, ysize) tuple
The (pixel) dimensions of the (output) sky patch.
If the input sky has a different size, then it will be *scaled*
to match this output size.
NOTE: Due to the FITS using Fortran ordering, while Python/numpy
using C ordering, therefore, the read in image/data array
has shape ``(ysize, xsize)``, therefore, the ``self.data``
should be reshaped to ``(ysize, xsize)`` on output.
pixelsize : float
The pixel size of the sky patch, will be used to determine
the sky coordinates.
Unit: [arcsec]
center : (ra, dec) tuple, optional
The (R.A., Dec.) coordinate of the sky patch center.
Unit: [deg]
infile : str, optional
The path to the input sky patch
frequency : float, optional
The frequency of the input sky path
Unit: [MHz]
Attributes
----------
type_ : str, "patch" or "healpix"
The type of this sky map
data : 1D `numpy.ndarray`
The flattened 1D array of map data
NOTE: The 2D image is flattened to 1D, making it easier to be
manipulated in a similar way as the HEALPix map.
shape : int tuple, (nrow*ncol, )
The shape of the flattened image array
NOTE: nrow=height, ncol=width
"""
type_ = "patch"
# Input sky patch and its frequency [ MHz ]
infile = None
frequency = None
# Sky data; should be a 1D ``numpy.ndarray`` (i.e., flattened)
data = None
# Coordinates of each pixel
coordinates = None
def __init__(self, size, pixelsize, center=(0.0, 0.0),
infile=None, frequency=None, **kwargs):
super().__init__(**kwargs)
self.xsize, self.ysize = size
self.pixelsize = pixelsize
if infile is not None:
self.read(infile, frequency)
@property
def area(self):
"""
The sky coverage of this patch.
Unit: [deg^2]
XXX/FIXME
---------
Assumed a flat sky!
Consider the spherical coordination and WCS sky projection!!
"""
lonsize, latsize = self.size
return lonsize * latsize
@property
def size(self):
"""
The sky patch size along X/longitude and Y/latitude axes.
Returns
-------
(lonsize, latsize) : float tuple
Longitudinal and latitudinal sizes
Unit: [deg]
"""
return (self.xsize * self.pixelsize * AUC.arcsec2deg,
self.ysize * self.pixelsize * AUC.arcsec2deg)
@property
def shape(self):
if self.data is not None:
return self.data.shape
else:
return (self.ysize * self.xsize, )
@property
def center(self):
return (self.xcenter, self.ycenter)
@property
def lon_limit(self):
"""
The longitudinal (X axis) limits.
Returns
-------
(lon_min, lon_max) : float tuple
The minimum and maximum longitudes (X axis).
Unit: [deg]
"""
lonsize, latsize = self.size
return (self.xcenter - 0.5*lonsize,
self.xcenter + 0.5*lonsize)
@property
def lat_limit(self):
"""
The latitudinal (Y axis) limits.
Returns
-------
(lat_min, lat_max) : float tuple
The minimum and maximum latitudes (Y axis).
Unit: [deg]
"""
lonsize, latsize = self.size
return (self.ycenter - 0.5*latsize,
self.ycenter + 0.5*latsize)
def read(self, infile, frequency=None):
"""
Read input sky data from file.
Parameters
----------
infile : str
The path to the input sky patch
frequency : float, optional
The frequency of the sky patch;
Unit: [MHz]
"""
self.infile = infile
if frequency is not None:
self.frequency = frequency
with fits.open(infile) as f:
self.data = f[0].data
self.header = f[0].header
self.ysize_in, self.xsize_in = self.data.shape
logger.info("Read sky patch from: %s (%dx%d)" %
(infile, self.xsize_in, self.ysize_in))
if (self.xsize_in != self.xsize) or (self.ysize_in != self.ysize):
logger.warning("Scale input sky patch to size %dx%d" %
(self.xsize, self.ysize))
zoom = (self.ysize/self.ysize_in, self.xsize/self.xsize_in)
self.data = ndimage.zoom(self.data, zoom=zoom, order=1)
# Flatten the image
self.data = self.data.flatten()
logger.info("Flattened the image to an 1D array")
def load(self, infile, frequency=None):
"""
Make a new copy of this instance, then read the input sky patch
and return the loaded new instance.
Returns
-------
A new copy of this instance with the given sky patch loaded.
"""
sky = self.copy()
sky.read(infile=infile, frequency=frequency)
return sky
def copy(self):
"""
Return a copy of this instance.
"""
return copy.deepcopy(self)
def write(self, outfile, clobber=False, checksum=True):
"""
Write current data to file.
"""
outdir = os.path.dirname(outfile)
if outdir and (not os.path.exists(outdir)):
os.makedirs(outdir)
logger.info("Created output directory: %s" % outdir)
# NOTE: output image shape be (ysize, xsize)!
image = self.data.reshape(self.ysize, self.xsize)
if hasattr(self, "header"):
header = self.header.copy(strip=True)
wcs_header = self.wcs.to_header()
header.extend(wcs_header, update=True)
header["PIXSIZE"] = (self.pixelsize, "Pixel size [arcsec]")
header["RA0"] = (self.center[0], "R.A. of patch center [deg]")
header["DEC0"] = (self.center[1], "Dec. of patch center [deg]")
hdu = fits.PrimaryHDU(data=image, header=header)
hdu.writeto(outfile, clobber=clobber, checksum=checksum)
logger.info("Write sky map to file: %s" % outfile)
@property
def wcs(self):
"""
The WCS header with sky projection information, for sky <->
pixel coordinate(s) conversion.
NOTE/XXX
--------
Currently just use the `CAR` (Cartesian) projection,
i.e., assuming a flat sky.
"""
w = make_wcs(center=(self.xcenter, self.ycenter),
size=(self.xsize, self.ysize),
pixelsize=self.pixelsize,
frame="ICRS", projection="CAR")
return w
def contains(self, skycoord):
"""
Check whether the given (list of) sky coordinate(s) falls
inside this sky patch (region).
Parameters
----------
skycoord : `~astropy.coordinate.SkyCoord` or (lon, lat) tuple
The (list of) sky coordinate(s) to check, or the (list of)
longitudes and latitudes of sky coordinates [ deg ]
Returns
-------
inside : bool
(list of) boolean values indicating whether the given
sky coordinate(s) is inside this sky patch.
"""
if not isinstance(skycoord, SkyCoord):
lon, lat = skycoord
skycoord = SkyCoord(lon, lat, unit=au.deg)
wcs = self.wcs
pixcoord = PixCoord.from_sky(skycoord, wcs=wcs)
center = PixCoord(x=self.xcenter, y=self.ycenter)
region = RectanglePixelRegion(center=center,
width=self.xsize, height=self.ysize)
return region.contains(pixcoord)
def reproject_from(self, data, wcs, squeeze=False, eps=1e-5):
"""
Reproject the given image/data together with WCS information
onto the grid of this sky.
Parameters
----------
data : 2D float `~numpy.ndarray`
The input data/image to be reprojected
wcs : `~astropy.wcs.WCS`
The WCS information of the input data/image (naxis=2)
squeeze : bool, optional
Whether to squeeze the reprojected data to only keep
the pixels greater than a small positive value specified
by parameter ``eps``.
Default: False
eps : float, optional
The small positive value to specify the squeeze threshold.
Default: 1e-5
Returns
-------
If ``squeeze=True``, then returns tuple of ``(indexes, values)``,
otherwise, returns the reprojected image/data array.
indexes : 1D int `~numpy.ndarray`
The indexes of the pixels with positive values.
values : 1D float `~numpy.ndarray`
The values of the above pixels.
reprojected : 1D `~numpy.ndarray`
The reprojected data/image with same shape of this sky,
i.e., ``self.data``.
"""
wcs_out = self.wcs
shape_out = (self.ysize, self.xsize)
reprojected, __ = reproject_interp(
input_data=(data, wcs), output_projection=wcs_out,
shape_out=shape_out)
reprojected = reprojected.flatten()
if squeeze:
with np.errstate(invalid="ignore"):
indexes = reprojected > eps
values = reprojected[indexes]
return (indexes, values)
else:
return reprojected
def random_points(self, n=1):
"""
Generate uniformly distributed random points within the sky patch.
Returns
-------
lon : float, or 1D `~numpy.ndarray`
Longitudes (Galactic/equatorial);
Unit: [deg]
lat : float, or 1D `~numpy.ndarray`
Latitudes (Galactic/equatorial);
Unit: [deg]
"""
lon_min, lon_max = self.lon_limit
lat_min, lat_max = self.lat_limit
lon = np.random.uniform(low=lon_min, high=lon_max, size=n)
lat = np.random.uniform(low=lat_min, high=lat_max, size=n)
return (lon, lat)
class SkyHealpix(SkyBase):
"""
Support the HEALPix all-sky map.
XXX/TODO: Update against ``SkyBase`` and ``SkyPatch``!!
Parameters
----------
nside : int
The pixel resolution of HEALPix (must be power of 2)
infile : str, optional
The path to the input sky patch
frequency : float, optional
The frequency of the input sky path
Unit: [MHz]
Attributes
----------
shape : int tuple, (npix,)
The shape (i.e., length) of the HEALPix array
pixelsize : float
The pixel size of the HEALPix map
Unit: [arcsec]
"""
type_ = "healpix"
# Input sky patch and its frequency [ MHz ]
infile = None
frequency = None
# Sky data; should be a `~numpy.ndarray`
data = None
# Coordinates of each pixel
coordinates = None
def __init__(self, nside, infile=None, frequency=None):
self.nside = nside
if infile is not None:
self.read(infile, frequency)
@property
def area(self):
"""
The sky coverage of this HEALPix map, i.e., all sky = 4π,
Unit: [deg^2]
"""
return 4*np.pi * np.rad2deg(1)**2
@property
def shape(self):
if self.data is not None:
return self.data.shape
else:
return (hp.nside2npix(self.nside), )
@property
def pixelsize(self):
ps = hp.nside2resol(self.nside, arcmin=True)
ps *= AUC.arcmin2arcsec
return ps
def read(self, infile, frequency=None):
"""
Read input HEALPix all-sky map.
Parameters
----------
infile : str
The path to the input HEALPix all-sky map.
frequency : float, optional
The frequency of the sky patch;
Unit: [MHz]
"""
self.infile = infile
if frequency is not None:
self.frequency = frequency
self.data, self.header = read_fits_healpix(infile)
self.nside_in = self.header["NSIDE"]
logger.info("Read HEALPix sky map from: {0} (Nside={1})".format(
infile, self.nside_in))
if self.nside_in != self.nside:
self.data = hp.ud_grade(self.data, nside_out=self.nside)
logger.warning("Upgrade/downgrade sky map from Nside " +
"{0} to {1}".format(self.nside_in, self.nside))
def load(self, infile, frequency=None):
"""
Make a new copy of this instance, then read the input sky map
and return the loaded new instance.
Returns
-------
A new copy of this instance with the given sky map loaded.
"""
sky = self.copy()
sky.read(infile=infile, frequency=frequency)
return sky
def copy(self):
"""
Return a copy of this instance.
"""
return copy.deepcopy(self)
def write(self, outfile, clobber=False, checksum=True):
"""
Write current data to file.
"""
outdir = os.path.dirname(outfile)
if outdir and (not os.path.exists(outdir)):
os.makedirs(outdir)
logger.info("Created output directory: %s" % outdir)
if hasattr(self, "header"):
header = self.header
write_fits_healpix(outfile, self.data, header=header,
clobber=clobber, checksum=checksum)
logger.info("Write sky map to file: %s" % outfile)
def contains(self, skycoord):
"""
Shim method to be consistent with ``SkyPatch``.
Always returns ``True``, since the HEALPix map covers all sky.
"""
if skycoord.isscalar:
return True
else:
return np.ones(shape=len(skycoord), dtype=np.bool)
def reproject_from(self, data, wcs, squeeze=False):
"""
Reproject the given image/data together with WCS information
onto the grid of this sky.
Parameters
----------
data : 2D float `~numpy.ndarray`
The input data/image to be reprojected
wcs : `~astropy.wcs.WCS`
The WCS information of the input data/image (naxis=2)
squeeze : bool, optional
Whether to squeeze the reprojected data to only keep
the positive pixels.
Returns
-------
If ``squeeze=True``, then returns tuple of ``(indexes, values)``,
otherwise, returns the reprojected image/data array.
indexes : 1D int `~numpy.ndarray`
The indexes of the pixels with positive values.
values : 1D float `~numpy.ndarray`
The values of the above pixels.
reprojected : 1D `~numpy.ndarray`
The reprojected data/image with same shape of this sky,
i.e., ``self.data.shape``.
"""
eps = 1e-5
reprojected, __ = reproject_to_healpix(
input_data=(data, wcs), coord_system_out="galactic",
nested=False, nside=self.nside)
if squeeze:
with np.errstate(invalid="ignore"):
indexes = reprojected > eps
values = reprojected[indexes]
return (indexes, values)
else:
return reprojected
def random_points(self, n=1):
"""
Generate uniformly distributed random points within the sky
(i.e., all sky; on an unit sphere).
Returns
-------
lon : float, or 1D `~numpy.ndarray`
Longitudes (Galactic/equatorial), [0, 360) [deg].
lat : float, or 1D `~numpy.ndarray`
Latitudes (Galactic/equatorial), [-90, 90] [deg].
"""
theta, phi = spherical_uniform(n)
lon = np.degrees(phi)
lat = 90.0 - np.degrees(theta)
return (lon, lat)
##########################################################################
def get_sky(configs):
"""
Sky class factory function to support both the sky patch and
HEALPix all-sky map.
Parameters
----------
configs : ConfigManager object
An `ConfigManager` object contains default and user configurations.
For more details, see the example config specification.
"""
# Parameters for the base sky class
kwargs = {
"float32": configs.getn("output/use_float"),
"clobber": configs.getn("output/clobber"),
"checksum": configs.getn("output/checksum"),
}
skytype = configs.getn("sky/type")
if skytype == "patch":
sec = "sky/patch"
xsize = configs.getn(sec+"/xsize")
ysize = configs.getn(sec+"/ysize")
xcenter = configs.getn(sec+"/xcenter")
ycenter = configs.getn(sec+"/ycenter")
pixelsize = configs.getn(sec+"/pixelsize")
return SkyPatch(size=(xsize, ysize), pixelsize=pixelsize,
center=(xcenter, ycenter), **kwargs)
elif skytype == "healpix":
sec = "sky/healpix"
nside = configs.getn(sec+"/nside")
return SkyHealpix(nside=nside, **kwargs)
else:
raise ValueError("unknown sky type: %s" % skytype)
|