1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
|
# Copyright (c) 2016-2017 Weitian LI <liweitianux@live.com>
# MIT license
"""
Flat ΛCDM cosmological model.
References
----------
.. [unibonn-wiki]
https://astro.uni-bonn.de/~pavel/WIKIPEDIA/Lambda-CDM_model.html
.. [wikipedia]
https://en.wikipedia.org/wiki/Lambda-CDM_model
.. [randall2002]
Randall, Sarazin & Ricker 2002, ApJ, 577, 579
http://adsabs.harvard.edu/abs/2002ApJ...577..579R
Sec.(2)
.. [hogg1999]
Hogg 1999, arXiv:astro-ph/9905116
http://adsabs.harvard.edu/abs/1999astro.ph..5116H
.. [thomas2000]
Thomas & Kantowski 2000, Physical Review D, 62, 103507
http://adsabs.harvard.edu/abs/2000PhRvD..62j3507T
.. [ellis2007]
Ellis 2007, General Relativity and Gravitation, 39, 1047
http://adsabs.harvard.edu/abs/2007GReGr..39.1047E
.. [cassano2005]
Cassano & Brunetti 2005, MNRAS, 357, 1313
http://adsabs.harvard.edu/abs/2005MNRAS.357.1313C
"""
import logging
import numpy as np
from scipy import integrate
from scipy import interpolate
from astropy.cosmology import FlatLambdaCDM
from .units import (UnitConversions as AUC, Constants as AC)
logger = logging.getLogger(__name__)
class Cosmology:
"""
Flat ΛCDM cosmological model.
Attributes
----------
H0 : float
Hubble parameter at present day (z=0)
Unit: [km/s/Mpc]
Om0 : float
Density parameter of (dark and baryon) matter at present day
Ob0 : float
Density parameter of baryon at present day
Ode0 : float
Density parameter of dark energy at present day
Tcmb0 : float
Present-day CMB temperature
Unit: [K]
sigma8 : float
Present-day rms density fluctuation on a scale of 8 h^-1 [Mpc]
ns : float
Scalar spectral index
Internal attributes
-------------------
_cosmo : `~astropy.cosmology.Cosmology`
Astropy cosmology instance to help calculations.
_growth_factor0 : float
Present day (z=0) growth factor
"""
# Present day (z=0) growth factor
_growth_factor0 = None
def __init__(self, H0=71.0, Om0=0.27, Ob0=0.046,
Tcmb0=2.725, sigma8=0.81, ns=0.96):
self.setup(H0=H0, Om0=Om0, Ob0=Ob0, Tcmb0=Tcmb0, sigma8=sigma8, ns=ns)
def setup(self, **kwargs):
"""
Setup/update the parameters of the cosmology model.
"""
for key, value in kwargs.items():
if key in ["H0", "Om0", "Ob0", "Tcmb0", "sigma8", "ns"]:
setattr(self, key, value)
else:
raise ValueError("unknown parameter: %s" % key)
self.Ode0 = 1.0 - self.Om0
self._cosmo = FlatLambdaCDM(H0=self.H0, Om0=self.Om0, Ob0=self.Ob0,
Tcmb0=self.Tcmb0)
self._growth_factor0 = None
logger.info("Setup cosmology with: {0}".format(kwargs))
@property
def h(self):
"""
Dimensionless/reduced Hubble parameter
"""
return self.H0 / 100.0
@property
def M8(self):
"""
Mass contained in a sphere of radius of 8 h^-1 [Mpc].
Unit: [Msun]
"""
r = 8 * AUC.Mpc2cm / self.h # [cm]
M8 = (4*np.pi/3) * r**3 * self.rho_crit(0) # [g]
M8 *= AUC.g2Msun # [Msun]
return M8
def E(self, z):
"""
Redshift evolution factor.
"""
return np.sqrt(self.Om0 * (1+z)**3 + self.Ode0)
def H(self, z):
"""
Hubble parameter at redshift z.
Unit: [km/s/Mpc]
"""
return self.H0 * self.E(z)
def Dc(self, z):
"""
Comoving distance at redshift z.
Unit: [Mpc]
"""
return self._cosmo.comoving_distance(z).value
def Dc_to_redshift(self, Dc, zmin=0, zmax=3, zstep=0.01):
"""
Calculate the redshifts corresponding to the given comoving
distances by interpolation.
Parameters
----------
Dc : float, or `~numpy.ndarray`
Comoving distances
Unit: [Mpc]
zmin, zmax : float, optional
The minimum and maximum redshift within which the input
comoving distances are enclosed; otherwise, a error will be
raised during the calculation.
zstep : float, optional
The redshift step size adopted to do the interpolation.
Returns
-------
redshift : float, or `~numpy.ndarray`
Calculated redshifts w.r.t. the input comoving distances.
Raises
------
ValueError :
The ``zmin`` or ``zmax`` is not enough to enclose the input
comoving distance range.
"""
Dc_min, Dc_max = self.Dc([zmin, zmax]) # [Mpc]
if np.sum(Dc < Dc_min) > 0:
raise ValueError("zmin=%s is too big for input Dc" % zmin)
if np.sum(Dc > Dc_max) > 0:
raise ValueError("zmax=%s is too small for input Dc" % zmax)
z_ = np.arange(zmin, zmax+zstep/2, zstep)
Dc_ = self.Dc(z_)
Dc_interp = interpolate.interp1d(Dc_, z_, kind="linear")
return Dc_interp(Dc)
def DA(self, z):
"""
Angular diameter distance at redshift z.
Unit: [Mpc]
Defined as the ratio of an object's physical transverse size
to its (observed) angular size (in radians). It is used to
convert the observed angular separations between sources into
their proper separations.
NOTE
----
This distance is NOT increasing indefinitely as z -> ∞.
Reference: Ref.[hogg1999]
"""
return self._cosmo.angular_diameter_distance(z).value
def DL(self, z):
"""
Luminosity distance at redshift z.
Unit: [Mpc]
Defined by the relationship between the measured bolometric
(i.e., integrated over all frequencies) flux S_bolo and the
object's intrinsic bolometric luminosity L_bolo.
NOTE
----
DL = DA * (1+z)^2
This is the general reciprocity theorem in General Relativity.
Reference
---------
* Ref.[hogg1999],Eq.(20,21)
* Ref.[ellis2007]
"""
return self._cosmo.luminosity_distance(z).value
@property
def hubble_time(self):
"""
Hubble time.
Unit: [Gyr]
"""
uconv = AUC.Mpc2km * AUC.s2Gyr
t_H = (1.0/self.H0) * uconv # [Gyr]
return t_H
def age(self, z):
"""
Cosmic time (age) at redshift z.
Parameters
----------
z : `~numpy.ndarray`
Redshift
Returns
-------
age : `~numpy.ndarray`
Age of the universe (cosmic time) at the given redshift.
Unit: [Gyr]
References: Ref.[thomas2000],Eq.(18)
"""
z = np.asarray(z)
t_H = self.hubble_time
t = ((2*t_H / 3 / np.sqrt(1-self.Om0)) *
np.arcsinh(np.sqrt((1/self.Om0 - 1) / (1+z)**3)))
return t
@property
def age0(self):
"""
Present age of the universe.
"""
return self.age(0)
def redshift(self, age):
"""
Invert the above ``self.age(z)`` formula analytically, to calculate
the redshift corresponding to the given cosmic time (age).
Parameters
----------
age : `~numpy.ndarray`
Age of the universe (i.e., cosmic time)
Unit: [Gyr]
Returns
-------
z : `~numpy.ndarray`
Redshift corresponding to the specified age.
"""
age = np.asarray(age)
t_H = self.hubble_time
term1 = (1/self.Om0) - 1
term2 = np.sinh(3*age * np.sqrt(1-self.Om0) / (2*t_H)) ** 2
z = (term1 / term2) ** (1/3) - 1
return z
def rho_crit(self, z):
"""
Critical density at redshift z.
Unit: [g/cm^3]
"""
rho = 3 * self.H(z)**2 / (8*np.pi * AC.G)
rho *= AUC.km2Mpc**2
return rho
def Om(self, z):
"""
Density parameter of matter at redshift z.
"""
return self.Om0 * (1+z)**3 / self.E(z)**2
@property
def baryon_fraction(self):
"""
The cosmological mean baryon fraction (w.r.t. matter).
XXX: assumed to be *constant* regardless of redshifts!
"""
return self.Ob0 / self.Om0
@property
def darkmatter_fraction(self):
"""
The cosmological mean dark matter fraction (w.r.t. matter),
assumed to be *constant* regardless of redshifts!
See also: ``self.baryon_fraction``
"""
return 1 - self.baryon_fraction
def overdensity_virial(self, z):
"""
Calculate the virial overdensity, which generally used to
determine the virial radius of a cluster.
References: Ref.[cassano2005],Eqs.(10,A4)
"""
omega_z = (1 / self.Om(z)) - 1
Delta_c = 18*np.pi**2 * (1 + 0.4093 * omega_z**0.9052)
return Delta_c
def overdensity_crit(self, z):
"""
Critical (linear) overdensity for a region to collapse
at a redshift z.
References: Ref.[randall2002],Eq.(A1)
"""
coef = 3 * (12*np.pi) ** (2/3) / 20
D0 = self.growth_factor0
D_z = self.growth_factor(z)
Om_z = self.Om(z)
delta_c = coef * (D0 / D_z) * (1 + 0.0123*np.log10(Om_z))
return delta_c
def growth_factor(self, z):
"""
Growth factor at redshift z.
References: Ref.[randall2002],Eq.(A7)
"""
x0 = (2 * self.Ode0 / self.Om0) ** (1/3)
x = x0 / (1 + z)
coef = np.sqrt(x**3 + 2) / (x**1.5)
integral = integrate.quad(lambda y: y**1.5 * (y**3+2)**(-1.5),
a=0, b=x, epsabs=1e-5, epsrel=1e-5)[0]
D = coef * integral
return D
@property
def growth_factor0(self):
"""
Present-day (z=0) growth factor.
"""
if self._growth_factor0 is None:
self._growth_factor0 = self.growth_factor(0)
return self._growth_factor0
def dVc(self, z):
"""
Calculate the differential comoving volume.
The dimensions is [Mpc^3]/[sr]/[unit redshift].
"""
return self._cosmo.differential_comoving_volume(z).value
|