1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
|
# Copyright (c) 2016 Weitian LI <liweitianux@live.com>
# MIT license
#
# References:
# [1] K. M. Gorski, et al. 2005, ApJ, 622, 759
# "HEALPix: A Framework for High-resolution Discretization and Fast
# Analysis of Data Distributed on the Sphere"
# http://healpix.sourceforge.net/
# [2] M. R. Calabretta & B. F. Roukema 2007, MNRAS, 381, 865
# "Mapping on the HEALPix Grid"
# [3] M. R. Calabretta: WCSLIB: HPXcvt
# http://www.atnf.csiro.au/people/mcalabre/WCS/
"""
HEALPix utilities
-----------------
healpix2hpx:
reorganize the HEALPix data (1D array as FITS table) into 2D FITS image
in HPX coordinate system
hpx2healpix:
revert the above reorganization and turn the 2D image in HPX format
back into HEALPix data as 1D array.
"""
from datetime import datetime, timezone
import logging
import numpy as np
import numba as nb
import healpy as hp
from astropy.io import fits
from . import read_fits_healpix
logger = logging.getLogger(__name__)
def healpix2hpx(data, append_history=None, append_comment=None):
"""Reorganize the HEALPix data (1D array as FITS table) into 2D FITS
image in HPX coordinate system.
Parameters
----------
data : str or `~astropy.io.fits.BinTableHDU`
The input HEALPix map to be converted to the HPX image,
which can be either the filename of the HEALPix FITS file,
or be a `~astropy.io.fits.BinTableHDU` instance containing
the HEALPix data as well as its header.
header : `~astropy.io.fits.Header`, optional
Header of the HEALPix FITS file
append_history : list[str]
Append the provided history to the output FITS header
append_comment : list[str]
Append the provided comment to the output FITS header
Returns
-------
hpx_data : 2D `~numpy.ndarray`
The reorganized HPX image
hpx_header : `~astropy.io.fits.Header`
FITS header for the HPX image
"""
hp_data, hp_header = read_fits_healpix(data)
dtype = hp_data.dtype
npix = len(hp_data)
nside = hp.npix2nside(npix)
logger.info("Loaded HEALPix data: dtype={0}, Npixel={1}, Nside={2}".format(
dtype, npix, nside))
hp_data = np.append(hp_data, np.nan).astype(dtype)
logger.info("Calculating the HPX indices ...")
hpx_idx = _calc_hpx_indices(nside)
# Fix indices of "-1" to set empty pixels with above appended NaN
hpx_idx[hpx_idx == -1] = len(hp_data) - 1
hpx_data = hp_data[hpx_idx]
hpx_header = _make_hpx_header(hp_header,
append_history=append_history,
append_comment=append_comment)
return (hpx_data.astype(hp_data.dtype), hpx_header)
def hpx2healpix(data, append_history=None, append_comment=None):
"""Revert the reorganization and turn the 2D image in HPX format
back into HEALPix data as 1D array.
Parameters
----------
data : str or `~astropy.io.fits.PrimaryHDU`
The input HPX image to be converted to the HEALPix data,
which can be either the filename of the HPX FITS image,
or be a `~astropy.io.fits.PrimaryHDU` instance containing
the HPX image as well as its header.
append_history : list[str]
Append the provided history to the output FITS header
append_comment : list[str]
Append the provided comment to the output FITS header
Returns
-------
hp_data : 1D `~numpy.ndarray`
HEALPix data reorganized from the input HPX image
hp_header : `~astropy.io.fits.Header`
FITS header for the HEALPix data
"""
if isinstance(data, str):
hpx_hdu = fits.open(data)[0]
hpx_data, hpx_header = hpx_hdu.data, hpx_hdu.header
logger.info("Read HPX image from FITS file: %s" % data)
else:
hpx_data, hpx_header = data.data, data.header
logger.info("Read HPX image from PrimaryHDU")
logger.info("HPX image dtype: {0}".format(hpx_data.dtype))
logger.info("HPX coordinate system: ({0}, {1})".format(
hpx_header["CTYPE1"], hpx_header["CTYPE2"]))
if ((hpx_header["CTYPE1"], hpx_header["CTYPE2"]) !=
("GLON-HPX", "GLAT-HPX")):
raise ValueError("only Galactic 'HPX' projection currently supported")
# Calculate Nside
nside = round(hpx_header["NAXIS1"] / 5)
nside2 = round(90 / np.sqrt(2) / hpx_header["CDELT2"])
if nside != nside2:
raise ValueError("Cannot determine the Nside value")
logger.info("Determined HEALPix Nside=%d" % nside)
#
npix = hp.nside2npix(nside)
logger.info("Calculating the HPX indices ...")
hpx_idx = _calc_hpx_indices(nside).flatten()
hpx_idx_uniq, idxx = np.unique(hpx_idx, return_index=True)
if np.sum(hpx_idx_uniq >= 0) != npix:
raise ValueError("Number of pixels does not match indices")
hpx_data = hpx_data.flatten()
hp_data = hpx_data[idxx[hpx_idx_uniq >= 0]]
hp_header = _make_healpix_header(hpx_header, nside=nside,
append_history=append_history,
append_comment=append_comment)
return (hp_data.astype(hpx_data.dtype), hp_header)
@nb.jit(nb.int64[:](nb.int64, nb.int64, nb.int64), nopython=True)
def _calc_hpx_row_idx(nside, facet, jmap):
"""Calculate the HEALPix indices for one row of a facet.
NOTE
----
* Only RING ordering is currently supported.
* This function calculates the double-pixelization index then converts
it to the regular RING index.
References: ref.[2], Sec.3.1
"""
I0 = [1, 3, -3, -1, 0, 2, 4, -2, 1, 3, -3, -1]
J0 = [1, 1, 1, 1, 0, 0, 0, 0, -1, -1, -1, -1]
#
n2side = 2 * nside
n8side = 8 * nside
nside1 = nside - 1
# double-pixelization index of the last pixel in the north polar cap
npole = (n2side - 1) ** 2 - 1
# double-pixelization pixel coordinates of the center of the facet
i0 = nside * I0[facet]
j0 = nside * J0[facet]
#
row_idx = np.zeros(nside, dtype=np.int64)
for imap in range(nside):
# (i, j) are 0-based, double-pixelization pixel coordinates.
# The origin is at the intersection of the equator and prime
# meridian, `i` increases to the east (N.B.) and `j` to the north.
i = i0 + nside1 - (jmap + imap)
j = j0 + jmap - imap
# convert `i` for counting pixels
if i < 0:
i += n8side
i += 1
#
if j > nside:
# north polar regime
if j == n2side:
idx2 = 0
else:
# number of pixels in a polar facet with this value of `j`
npj = 2 * (n2side - j)
# index of the last pixel in the row above this
idx2 = (npj - 1) ** 2 - 1
# number of pixels in this row in the polar facets before this
idx2 += npj * (i // n2side)
# pixel number in this polar facet
idx2 += i % n2side - (j - nside) - 1
elif j >= -nside:
# equatorial regime
idx2 = npole + n8side * (nside - j) + i
else:
# south polar regime
idx2 = 24 * nside**2 + 1
if j > -n2side:
# number of pixels in a polar facet with this value of `j`
npj = 2 * (n2side + j)
# total number of pixels in this row or below it
idx2 -= (npj + 1) ** 2
# number of pixels in this row in the polar facets before this
idx2 += npj * (i // n2side)
# pixel number in this polar facet
idx2 += i % n2side + (j + nside) - 1
# convert double-pixelization index to regular RING index
idx = (idx2 - 1) // 2
row_idx[imap] = idx
return row_idx
@nb.jit(nb.int64[:, :](nb.int64), nopython=True)
def _calc_hpx_indices(nside):
"""Calculate HEALPix element indices for the HPX projection scheme.
Parameters
----------
nside : int
Nside of the input/output HEALPix data
Returns
-------
indices : 2D `~numpy.ndarray`
2D integer array of same size as the input/output HPX FITS image,
with elements tracking the indices of the HPX pixels in the
HEALPix 1D array, while elements with value "-1" indicating
null/empty HPX pixels.
NOTE
----
* The indices are 0-based;
* Currently only HEALPix RING ordering supported;
* The null/empty elements in the HPX projection are filled with "-1".
"""
# number of horizontal/vertical facet
nfacet = 5
# Facets layout of the HPX projection scheme.
# Note that this appears to be upside-down, and the blank facets
# are marked with "-1".
# Ref: ref.[2], Fig.4
#
# XXX:
# Cannot use the nested list here, which fails with ``numba`` error:
# ``NotImplementedError: unsupported nested memory-managed object``
FACETS_LAYOUT = np.zeros((nfacet, nfacet), dtype=np.int64)
FACETS_LAYOUT[0, :] = [6, 9, -1, -1, -1]
FACETS_LAYOUT[1, :] = [1, 5, 8, -1, -1]
FACETS_LAYOUT[2, :] = [-1, 0, 4, 11, -1]
FACETS_LAYOUT[3, :] = [-1, -1, 3, 7, 10]
FACETS_LAYOUT[4, :] = [-1, -1, -1, 2, 6]
#
shape = (nfacet*nside, nfacet*nside)
indices = -np.ones(shape, dtype=np.int64)
#
# Loop vertically facet-by-facet
for jfacet in range(nfacet):
# Loop row-by-row
for j in range(nside):
row = jfacet * nside + j
# Loop horizontally facet-by-facet
for ifacet in range(nfacet):
facet = FACETS_LAYOUT[jfacet, ifacet]
if facet < 0:
# blank facet
pass
else:
idx = _calc_hpx_row_idx(nside, facet, j)
col = ifacet * nside
indices[row, col:(col+nside)] = idx
#
return indices
def _make_hpx_header(header, append_history=None, append_comment=None):
"""Make the FITS header for the HPX image."""
header = header.copy(strip=True)
nside = header["NSIDE"]
# set pixel transformation parameters
crpix1 = (5 * nside + 1) / 2.0
crpix2 = crpix1
header["CRPIX1"] = (crpix1, "Coordinate reference pixel")
header["CRPIX2"] = (crpix2, "Coordinate reference pixel")
cos45 = np.cos(np.deg2rad(45))
header["PC1_1"] = (cos45, "Transformation matrix element")
header["PC1_2"] = (cos45, "Transformation matrix element")
header["PC2_1"] = (-cos45, "Transformation matrix element")
header["PC2_2"] = (cos45, "Transformation matrix element")
cdelt1 = -90.0 / nside / np.sqrt(2)
cdelt2 = -cdelt1
header["CDELT1"] = (cdelt1, "[deg] Coordinate increment")
header["CDELT2"] = (cdelt2, "[deg] Coordinate increment")
# set celestial transformation parameters
header["CTYPE1"] = ("GLON-HPX",
"Galactic longitude in an HPX projection")
header["CTYPE2"] = ("GLAT-HPX",
"Galactic latitude in an HPX projection")
header["CRVAL1"] = (0.0,
"[deg] Galactic longitude at the reference point")
header["CRVAL2"] = (0.0,
"[deg] Galactic latitude at the reference point")
header["PV2_1"] = (4, "HPX H parameter (longitude)")
header["PV2_2"] = (3, "HPX K parameter (latitude)")
logger.info("Made HPX FITS header")
#
header["DATE"] = (datetime.now(timezone.utc).astimezone().isoformat(),
"File creation date")
comments = [
'The HPX coordinate system is an reorganization of the HEALPix',
'data without regridding or interpolation, which is described in',
'"Mapping on the HEALPix Grid" by M. Calabretta and B. Roukema',
'(2007, MNRAS, 381, 865-872)',
'See also http://www.atnf.csiro.au/people/Mark.Calabretta/'
]
for comment in comments:
header.add_comment(comment)
#
if append_history is not None:
logger.info("HPX FITS header: append history")
for history in append_history:
header.add_history(history)
if append_comment is not None:
logger.info("HPX FITS header: append comments")
for comment in append_comment:
header.add_comment(comment)
return header
def _make_healpix_header(header, nside,
append_history=None, append_comment=None):
"""Make the FITS header for the HEALPix data."""
header = header.copy(strip=True)
# set HEALPix parameters
header["PIXTYPE"] = ("HEALPIX", "HEALPix pixelization")
header["ORDERING"] = ("RING",
"Pixel ordering scheme, either RING or NESTED")
header["NSIDE"] = (nside, "HEALPix resolution parameter")
npix = hp.nside2npix(nside)
header["NPIX"] = (npix, "Total number of pixels")
header["FIRSTPIX"] = (0, "First pixel # (0 based)")
header["LASTPIX"] = (npix-1, "Last pixel # (0 based)")
logger.info("Made HEALPix FITS header")
#
header["DATE"] = (datetime.now(timezone.utc).astimezone().isoformat(),
"File creation date")
#
if append_history is not None:
logger.info("HEALPix FITS header: append history")
for history in append_history:
header.add_history(history)
if append_comment is not None:
logger.info("HEALPix FITS header: append comments")
for comment in append_comment:
header.add_comment(comment)
return header
@nb.jit(nb.int64(nb.int64), nopython=True)
def nside2npix(nside):
"""Calculate the number of pixels for the given Nside resolution.
NOTE
----
This is the JIT-optimized version that replaces the ``healpy.nside2npix``
"""
return 12 * nside * nside
@nb.jit(nb.int64(nb.int64, nb.float64, nb.float64), nopython=True)
def ang2pix_ring_single(nside, theta, phi):
"""Calculate the pixel indexes in RING ordering scheme for one single
pair of angular coordinate on the sphere.
Parameters
----------
theta : float
The polar angle (i.e., latitude), θ ∈ [0, π]. (unit: rad)
phi : float
The azimuthal angle (i.e., longitude), φ ∈ [0, 2π). (unit: rad)
Returns
-------
ipix : int
The index of the pixel corresponding to the input coordinate.
NOTE
----
* Only support the *RING* ordering scheme
* This is the JIT-optimized version that partially replaces the
``healpy.ang2pix``
References
----------
- HEALPix software: ``src/C/subs/chealpix.c``: ``ang2pix_ring_z_phi()``
http://healpix.sourceforge.net/
"""
z = np.cos(theta) # colatitude
za = np.absolute(z)
tt = (2.0 / np.pi) * np.remainder(phi, 2*np.pi) # range: [0, 4)
if za <= 2.0/3.0:
# Equatorial region
temp1 = nside * (tt + 0.5)
temp2 = nside * z * 0.75
jp = int(temp1 - temp2) # Index of ascending edge line
jm = int(temp1 + temp2) # Index of descending edge line
# Ring number counted from z=2/3
iring = nside + 1 + jp - jm # range: [1, 2n+1]
kshift = 1 - (iring & 1) # kshift=1 if ir even, 0 otherwise
ip = int((jp + jm - nside + kshift + 1) / 2)
ip = np.remainder(ip, 4*nside)
ipix = nside * (nside-1) * 2 + (iring-1) * 4 * nside + ip
else:
# North & South polar caps
tp = tt - int(tt)
tmp = nside * np.sqrt(3 * (1-za))
jp = int(tp * tmp)
jm = int((1.0-tp) * tmp)
# Ring number counted from the closest pole
iring = jp + jm + 1
ip = int(tt * iring)
ip = np.remainder(ip, 4*iring)
#
if z > 0:
ipix = 2 * iring * (iring-1) + ip
else:
ipix = 12 * nside * nside - 2 * iring * (iring+1) + ip
#
return ipix
@nb.jit(nb.types.UniTuple(nb.float64, 2)(nb.int64, nb.int64), nopython=True)
def pix2ang_ring_single(nside, ipix):
"""Calculate the angular coordinate on the sphere for one pixel index
in the RING ordering scheme.
Parameters
----------
ipix : int
The index of the HEALPix pixel in RING ordering.
Returns
-------
theta : float
The polar angle (i.e., latitude), θ ∈ [0, π]. (unit: rad)
phi : float
The azimuthal angle (i.e., longitude), φ ∈ [0, 2π). (unit: rad)
NOTE
----
* Only support the *RING* ordering scheme
* This is the JIT-optimized version that partially replaces the
``healpy.ang2pix``
References
----------
- HEALPix software: ``src/C/subs/chealpix.c``: ``pix2ang_ring_z_phi()``
http://healpix.sourceforge.net/
"""
ncap = nside * (nside-1) * 2
npix = nside2npix(nside)
fact2 = 4.0 / npix
if ipix < ncap:
# North polar cap
tmp = int(np.sqrt(2*ipix + 1 + 0.5))
# Ring number counted from the North pole
iring = int((tmp + 1) / 2)
iphi = (ipix + 1) - 2 * iring * (iring-1)
z = 1.0 - iring * iring * fact2
phi = (iphi - 0.5) * np.pi / (2 * iring)
elif ipix < (npix - ncap):
# Equatorial region
fact1 = 2 * nside * fact2
ip = ipix - ncap
# Ring number counted from the North pole
iring = int(ip / (4*nside) + nside)
iphi = ip % (4*nside) + 1
if (iring + nside) % 2 == 1:
fodd = 1.0 # (iring+nside) is odd
else:
fodd = 0.5
z = (2*nside - iring) * fact1
phi = (iphi - fodd) * np.pi / (2 * nside)
else:
# South polar cap
ip = npix - ipix
tmp = int(np.sqrt(2*ip - 1 + 0.5))
# Ring number counted from the South pole
iring = int((tmp + 1) / 2)
iphi = 4 * iring + 1 - (ip - 2 * iring * (iring-1))
z = iring * iring * fact2 - 1.0
phi = (iphi - 0.5) * np.pi / (2 * iring)
#
theta = np.arccos(z)
return (theta, phi)
@nb.jit([nb.int64[:](nb.int64, nb.float64[:], nb.float64[:]),
nb.int64[:, :](nb.int64, nb.float64[:, :], nb.float64[:, :])],
nopython=True)
def ang2pix_ring(nside, theta, phi):
"""Calculate the pixel indexes in RING ordering scheme for each
pair of angular coordinates on the sphere.
Parameters
----------
theta : 1D or 2D `~numpy.ndarray`
The polar angles (i.e., latitudes), θ ∈ [0, π]. (unit: rad)
phi : 1D or 2D `~numpy.ndarray`
The azimuthal angles (i.e., longitudes), φ ∈ [0, 2π). (unit: rad)
Returns
-------
ipix : 1D or 1D `~numpy.ndarray`
The indices of the pixels corresponding to the input coordinates.
The shape is the same as the input array.
NOTE
----
* Only support the *RING* ordering scheme
* This is the JIT-optimized version that partially replaces the
``healpy.ang2pix``
"""
shape = theta.shape
size = theta.size
theta = theta.flatten()
phi = phi.flatten()
ipix = np.zeros(size, dtype=np.int64)
for i in range(size):
ipix[i] = ang2pix_ring_single(nside, theta[i], phi[i])
return ipix.reshape(shape)
@nb.jit([nb.types.UniTuple(nb.float64[:], 2)(nb.int64, nb.int64[:]),
nb.types.UniTuple(nb.float64[:, :], 2)(nb.int64, nb.int64[:, :])],
nopython=True)
def pix2ang_ring(nside, ipix):
"""Calculate the angular coordinates on the sphere for each pixel
index in the RING ordering scheme.
Parameters
----------
ipix : 1D or 2D `~numpy.ndarray`
The indices of the HEALPix pixels in the RING ordering
Returns
-------
theta : 1D or 2D `~numpy.ndarray`
The polar angles (i.e., latitudes), θ ∈ [0, π]. (unit: rad)
phi : 1D or 2D `~numpy.ndarray`
The azimuthal angles (i.e., longitudes), φ ∈ [0, 2π). (unit: rad)
The shape is the same as the input array.
NOTE
----
* Only support the *RING* ordering scheme
* This is the JIT-optimized version that partially replaces the
``healpy.pix2ang``
"""
shape = ipix.shape
size = ipix.size
ipix = ipix.flatten()
theta = np.zeros(size, dtype=np.float64)
phi = np.zeros(size, dtype=np.float64)
for i in range(size):
theta_, phi_ = pix2ang_ring_single(nside, ipix[i])
theta[i] = theta_
phi[i] = phi_
return (theta.reshape(shape), phi.reshape(shape))
|