1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
|
# Copyright (c) 2017 Weitian LI <weitian@aaronly.me>
# MIT license
"""
Input/output utilities
----------------------
* dataframe_to_csv:
Save the given Pandas DataFrame into a CSV text file.
* pickle_dump:
Dump the given object into the output file using ``pickle.dump()``.
* pickle_load:
Load the pickled Python back from the given file.
* write_fits_image:
Write the supplied image (together with header information) into
the output FITS file.
* read_fits_healpix:
Read the HEALPix map from a FITS file or a BinTableHDU to 1D array
in *RING* ordering.
* write_fits_healpix:
Write the HEALPix map to a FITS file with proper header as well
as the user-provided header.
"""
import os
import logging
import pickle
from datetime import datetime, timezone
import numpy as np
import pandas as pd
from astropy.io import fits
import healpy as hp
logger = logging.getLogger(__name__)
# Column formats for FITS binary table
# Reference:
# http://docs.astropy.org/en/stable/io/fits/usage/table.html#column-creation
FITS_COLUMN_FORMATS = {
np.dtype("bool"): "L",
np.dtype("uint8"): "B",
np.dtype("int16"): "I",
np.dtype("int32"): "J",
np.dtype("int64"): "K",
np.dtype("float32"): "E",
np.dtype("float64"): "D",
np.dtype("complex64"): "C",
np.dtype("complex128"): "M",
}
def _create_dir(filepath):
"""
Check the existence of the target directory, and create it if necessary.
NOTE
----
If the given ``filepath`` is simply the filename without any directory
path, then just returns.
"""
dirname = os.path.dirname(filepath)
# ``dirname == ""`` if ``filepath`` does not contain directory path
if dirname and not os.path.exists(dirname):
os.makedirs(dirname)
logger.info("Created output directory: {0}".format(dirname))
def _check_existence(filepath, clobber=False, remove=False):
"""
Check the existence of the target file.
* raise ``OSError`` : file exists and clobber is False;
* no action : files does not exists or clobber is True;
* remove the file : files exists and clobber is True and remove is True
"""
if os.path.exists(filepath):
if clobber:
if remove:
logger.warning("Removed existing file: {0}".format(filepath))
os.remove(filepath)
else:
logger.warning("Existing file will be overwritten.")
else:
raise OSError("Output file exists: {0}".format(filepath))
def dataframe_to_csv(df, outfile, comment=None, clobber=False):
"""
Save the given Pandas DataFrame into a CSV text file with comments
prepended at the file head.
Parameters
----------
df : `~pandas.DataFrame`
The DataFrame to be saved to the CSV text file.
outfile : str
The path to the output CSV file.
comment : list[str], optional
A list of comments to be prepended to the output CSV file header.
The prefix ``#`` is not required and will be automatically added.
clobber : bool, optional
Whether overwrite the existing output file?
Default: False
"""
if not isinstance(df, pd.DataFrame):
raise TypeError("Not a Pandas DataFrame!")
_create_dir(outfile)
_check_existence(outfile, clobber=clobber, remove=True)
# Add a default header comment
if comment is None:
comment = [
"by %s" % __name__,
"at %s" % datetime.now(timezone.utc).astimezone().isoformat(),
]
with open(outfile, "w") as fh:
# Write header comments with ``#`` prefixed.
fh.write("".join(["# "+line.strip()+"\n" for line in comment]))
df.to_csv(fh, header=True, index=False)
logger.info("Wrote DataFrame to CSV file: {0}".format(outfile))
def csv_to_dataframe(infile):
"""
Read the given CSV file as a Pandas DataFrame, with head comments
also considered and returned.
Parameters
----------
infile : str
The path to the input CSV file.
Returns
df : `~pandas.DataFrame`
The DataFrame read from the CSV text file.
comment : list[str]
A list of comments read from the lines prefixing with ``#``
at the CSV file header.
The prefix ``#`` is striped.
"""
comments = []
for line in open(infile):
line = line.strip()
if line == "":
continue
elif line[0] == "#":
comments.append(line.lstrip("# "))
else:
break
df = pd.read_csv(infile, comment="#")
return (df, comments)
def pickle_dump(obj, outfile, clobber=False):
"""
Dump the given object into the output file using ``pickle.dump()``.
NOTE
----
The dumped output file is in binary format, and can be loaded back
using ``pickle.load()``, e.g., the ``pickle_load()`` function below.
Example
-------
>>> a = [1, 2, 3]
>>> pickle.dump(a, file=open("a.pkl", "wb"))
>>> b = pickle.load(open("a.pkl", "rb))
>>> a == b
True
Parameters
----------
outfile : str
The path/filename to the output file storing the pickled object.
clobber : bool, optional
Whether to overwrite the existing output file.
Default: False
"""
_create_dir(outfile)
_check_existence(outfile, clobber=clobber, remove=True)
pickle.dump(obj, file=open(outfile, "wb"))
logger.info("Pickled data to file: %s" % outfile)
def pickle_load(infile):
"""
Load the pickled Python back from the given file.
Parameters
----------
infile : str
The path/filename to the data file, e.g., dumped by the above
``pickle_dump()`` function.
Returns
-------
obj : The loaded Python object from the input file.
"""
return pickle.load(open(infile, "rb"))
def write_fits_image(outfile, image, header=None, float32=False,
clobber=False, checksum=False):
"""
Write the supplied image (together with header information) into
the output FITS file.
Parameters
----------
outfile : str
The path/filename to the output file storing the pickled object.
image : 2D `~numpy.ndarray`
The image data to be written out to the FITS file.
NOTE: image.shape: (nrow, ncol) <-> FITS image: (ncol, nrow)
header : `~astropy.io.fits.Header`
The FITS header information for this image
float32 : bool, optional
Whether coerce the image data (generally double/float64 data type)
into single/float32 (in order to save space)?
Default: False (i.e., preserve the data type unchanged)
clobber : bool, optional
Whether to overwrite the existing output file.
Default: False
checksum : bool, optional
Whether to calculate the data checksum, which may cost some time?
Default: False
"""
_create_dir(outfile)
_check_existence(outfile, clobber=clobber, remove=True)
hdr = fits.Header()
hdr["CREATOR"] = (__name__, "File creator")
hdr["DATE"] = (datetime.now(timezone.utc).astimezone().isoformat(),
"File creation date")
if header is not None:
hdr.extend(header, update=True)
if float32:
image = np.asarray(image, dtype=np.float32)
hdu = fits.PrimaryHDU(data=image, header=header)
hdu.writeto(outfile, checksum=checksum)
logger.info("Wrote image to FITS file: %s" % outfile)
def read_fits_healpix(filename):
"""
Read the HEALPix map from a FITS file or a BinTableHDU to 1D array
in *RING* ordering.
Parameters
----------
filename : str or `~astropy.io.fits.BinTableHDU`
Filename of the HEALPix FITS file,
or an `~astropy.io.fits.BinTableHDU` instance.
Returns
-------
data : 1D `~numpy.ndarray`
HEALPix data in *RING* ordering with same dtype as input
header : `~astropy.io.fits.Header`
Header of the input FITS file
NOTE
----
This function wraps on `healpy.read_map()`, but set the data type of
data array to its original value as in FITS file, as well as return
the header of input FITS file.
"""
if isinstance(filename, fits.BinTableHDU):
hdu = filename
else:
# Read the first extended table
hdu = fits.open(filename)[1]
# Hack to ignore the dtype byteorder, use native endianness
dtype = np.dtype(hdu.data.field(0).dtype.type)
header = hdu.header
data = hp.read_map(hdu, nest=False, verbose=False)
return (data.astype(dtype), header)
def write_fits_healpix(outfile, hpmap, header=None, float32=False,
clobber=False, checksum=False):
"""
Write the HEALPix map to a FITS file with proper header as well
as the user-provided header.
This function currently only support one style of HEALPix with the
following specification:
- Only one column: I (intensity)
- ORDERING: RING
- COORDSYS: G (Galactic)
- OBJECT: FULLSKY
- INDXSCHM: IMPLICIT
Parameters
----------
outfile : str
Filename of the output file to write the HEALPix map data
hpmap : 1D `~numpy.ndarray`
1D array containing the HEALPix map data, and the ordering
scheme should be "RING";
The data type is preserved or cast into single/float32 if the
below ``float32`` parameter is True, in the output FITS file.
header : `~astropy.io.fits.Header`, optional
Extra header to be appended to the output FITS
float32 : bool, optional
Whether coerce the image data (generally double/float64 data type)
into single/float32 (in order to save space)?
Default: False (i.e., preserve the data type unchanged)
clobber : bool, optional
Whether to overwrite the existing output file?
Default: False
checksum : bool, optional
Whether to calculate the data checksum, which may cost some time?
Default: False
NOTE
----
- This function is intended to replace the most common case of
`healpy.write_map()`, which still uses some deprecated functions of
`numpy` and `astropy`, meanwhile, its interface/arguments is not very
handy.
- This function (currently) only implement the very basic feature of
the `healpy.write_map()`.
"""
_create_dir(outfile)
_check_existence(outfile, clobber=clobber, remove=True)
hpmap = np.asarray(hpmap)
if hpmap.ndim != 1:
raise ValueError("Invalid HEALPix data: only support 1D array")
if float32:
dtype = np.float32
else:
# HACK: ignore the dtype byteorder, use native endianness
dtype = np.dtype(hpmap.dtype.type)
hpmap = hpmap.astype(dtype)
#
npix = hpmap.size
nside = int((npix / 12) ** 0.5)
colfmt = FITS_COLUMN_FORMATS.get(hpmap.dtype)
if hpmap.size > 1024:
hpmap = hpmap.reshape(int(hpmap.size/1024), 1024)
colfmt = "1024" + colfmt
#
hdr = fits.Header()
# set HEALPix parameters
hdr["PIXTYPE"] = ("HEALPIX", "HEALPix pixelization")
hdr["ORDERING"] = ("RING",
"Pixel ordering scheme, either RING or NESTED")
hdr["COORDSYS"] = ("G", "Ecliptic, Galactic or Celestial (equatorial)")
hdr["NSIDE"] = (nside, "HEALPix resolution parameter")
hdr["NPIX"] = (npix, "Total number of pixels")
hdr["FIRSTPIX"] = (0, "First pixel # (0 based)")
hdr["LASTPIX"] = (npix-1, "Last pixel # (0 based)")
hdr["INDXSCHM"] = ("IMPLICIT", "Indexing: IMPLICIT or EXPLICIT")
hdr["OBJECT"] = ("FULLSKY", "Sky coverage, either FULLSKY or PARTIAL")
#
hdr["EXTNAME"] = ("HEALPIX", "Name of the binary table extension")
hdr["CREATOR"] = (__name__, "File creator")
hdr["DATE"] = (datetime.now(timezone.utc).astimezone().isoformat(),
"File creation date")
# Merge user-provided header
# NOTE: use the `.extend()` method instead of `.update()` method
if header is not None:
hdr.extend(header, update=True)
#
hdu = fits.BinTableHDU.from_columns([
fits.Column(name="I", array=hpmap, format=colfmt)
], header=hdr)
hdu.writeto(outfile, checksum=checksum)
logger.info("Wrote HEALPix map to FITS file: %s" % outfile)
def write_dndlnm(outfile, dndlnm, z, mass, clobber=False):
"""
Write the halo mass distribution data into file in NumPy's ".npz"
format, which packs the ``dndlnm``, ``z``, and ``mass`` arrays.
Parameters
----------
outfile : str
The output file to store the dndlnm data, in ".npz" format.
dndlnm : 2D float `~numpy.ndarray`
Shape: (len(z), len(mass))
Differential mass function in terms of natural log of M.
Unit: [Mpc^-3] (the little "h" is folded into the values)
z : 1D float `~numpy.ndarray`
Redshifts where the halo mass distribution is calculated.
mass : 1D float `~numpy.ndarray`
(Logarithmic-distributed) masses points.
Unit: [Msun] (the little "h" is folded into the values)
clobber : bool, optional
Whether to overwrite the existing output file?
"""
_create_dir(outfile)
_check_existence(outfile, clobber=clobber, remove=True)
np.savez(outfile, dndlnm=dndlnm, z=z, mass=mass)
def read_dndlnm(infile):
"""
Read the halo mass distribution data from the above saved file.
Parameters
----------
infile : str
The ".npz" file from which to read the dndlnm data.
Returns
-------
(dndlnm, z, mass)
"""
with np.load(infile) as npzfile:
dndlnm = npzfile["dndlnm"]
z = npzfile["z"]
mass = npzfile["mass"]
return (dndlnm, z, mass)
|