1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
|
# Copyright (c) 2017 Weitian LI <weitian@aaronly.me>
# MIT license
"""
Radio interferometer layout configurations.
"""
import os
import logging
import shutil
import numpy as np
import pandas as pd
try:
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
from matplotlib.figure import Figure
has_matplotlib = True
except ImportError:
has_matplotlib = False
from .wgs84 import geodetic2enu
logger = logging.getLogger(__name__)
class SKA1Low:
"""
Process SKA1-low layout data and generate the telescope model
for OSKAR.
Parameters
----------
infile : str
Path to the SKA1-low layout data file
stn_antennas : int, optional
Number of antenna elements per station (default: 256)
stn_diameter : float, optional
Diameter of each station (unit: [m])
Default: 35.0 [m]
ant_min_sep : float, optional
Minimum separation between two antennas (unit: [m])
Default: 1.5 [m] (Ref.[3],Sec.3)
r_core : float, optional
Radius defined as the core region (unit: [m]), default: 500.0
r_central : float, optional
Radius defined as the central region (unit: [m]), default: 1700.0
Reference
---------
[1] SKA-TEL-SKO-0000422, revision 02, 2016-05-31, Table 1
http://astronomers.skatelescope.org/wp-content/uploads/2016/09/SKA-TEL-SKO-0000422_02_SKA1_LowConfigurationCoordinates-1.pdf
[2] OSKAR: telescope model
http://www.oerc.ox.ac.uk/~ska/oskar2/OSKAR-Telescope-Model.pdf
[3] Trott et al. 2017, MNRAS, 470, 455;
http://adsabs.harvard.edu/abs/2017MNRAS.470..455T
"""
def __init__(self, infile, stn_antennas=256, stn_diameter=35.0,
ant_min_sep=1.5, r_core=500.0, r_central=1700.0):
self.infile = infile
self.stn_antennas = stn_antennas
self.stn_diameter = stn_diameter # [m]
self.ant_min_sep = ant_min_sep # [m]
self.r_core = r_core # [m]
self.r_central = r_central # [m]
self.data = pd.read_csv(infile, sep="\s+", comment="#",
index_col="Label")
logger.info("Read telescope layout data from: %s" % infile)
self.position_wgs84 = np.array(self.data.loc["CENTER", :])
logger.info("Telescope center coordinate: (%f, %f)" %
tuple(self.position_wgs84))
self.labels = self.make_station_labels(self.data.index[1:])
# (longitudes, latitudes)
self.layouts_wgs84 = np.array(self.data.iloc[1:, :])
# Convert WGS84 to ENU coordinates
p0 = [self.position_wgs84[0], self.position_wgs84[1], 0.0]
layouts = np.array([geodetic2enu((lon, lat, 0.0), p0)
for lon, lat in self.layouts_wgs84])
layouts[:, 2] = 0.0 # set `up` to 0.0
self.layouts_enu = layouts
logger.info("Number of stations: %d" % len(self.layouts_wgs84))
def generate_stations(self):
"""
Generate the antenna elements layouts for each station.
"""
layouts = []
N = len(self.labels)
logger.info("Number of antennas per station: %d" %
self.stn_antennas)
logger.info("Station diameter: %.2f [m]" % self.stn_diameter)
logger.info("Station antennas minimum separation: %.2f [m]" %
self.ant_min_sep)
logger.info("Generating antenna elements layouts ...")
for i, label in enumerate(self.labels):
logger.debug("Generate layout for [#%d/%d] station: %s" %
(i+1, N, label))
x, y, __ = self.rand_uniform_2d(
n=self.stn_antennas, r_max=self.stn_diameter/2.0,
min_sep=self.ant_min_sep)
layouts.append((x, y))
self.stn_layouts = layouts
logger.info("DONE generate station layouts.")
def plot_stations(self, outdir, figsize=(8, 8), dpi=150):
"""
Make a plot for each station.
"""
if not has_matplotlib:
logger.error("matplotlib required to plot stations")
N = len(self.labels)
r_max = self.stn_diameter / 2.0
for i, label in enumerate(self.labels):
x, y = self.stn_layouts[i]
fpng = os.path.join(outdir, label+".png")
fig = Figure(figsize=figsize, dpi=dpi)
FigureCanvas(fig)
ax = fig.add_subplot(111, aspect="equal")
ax.plot(x, y, "k+")
ax.grid()
ax.set_xlim((-r_max*1.05, r_max*1.05))
ax.set_ylim((-r_max*1.05, r_max*1.05))
ax.set_xlabel("East [m]")
ax.set_ylabel("North [m]")
ax.set_title("Antenna elements: %d; $d_{min}$ = %.2f [m]" %
(self.stn_antennas, self.ant_min_sep),
fontsize=10)
fig.suptitle("Station [#%d/%d]: %s" % (i+1, N, label),
fontsize=14)
fig.tight_layout()
fig.subplots_adjust(top=0.9)
fig.savefig(fpng)
logger.debug("Made plot for [#%d/%d] station: %s" %
(i+1, N, fpng))
def plot_telescope(self, outdir, figsize=(8, 8), dpi=150):
"""
Make plots showing all the telescope stations, central
stations, and core stations.
"""
if not has_matplotlib:
logger.error("matplotlib required to plot the telescope")
x, y = self.layouts_enu[:, 0], self.layouts_enu[:, 1]
# All stations
fpng = os.path.join(outdir, "layout_all.png")
fig = Figure(figsize=figsize, dpi=dpi)
FigureCanvas(fig)
ax = fig.add_subplot(111, aspect="equal")
ax.plot(x, y, "ko")
ax.grid()
ax.set_xlabel("East [m]")
ax.set_ylabel("North [m]")
ax.set_title("SKA1-low Stations Layout (All #%d)" % len(x))
fig.tight_layout()
fig.savefig(fpng)
logger.debug("Made plot for telescope all station: %s" % fpng)
# TODO...
def make_oskar_model(self, outdir, clobber=False):
"""
Create the telescope model for OSKAR.
"""
if os.path.exists(outdir):
if clobber:
shutil.rmtree(outdir)
logger.warning("Removed existing model: %s" % outdir)
else:
raise FileExistsError("Output directory already exists: " %
outdir)
os.mkdir(outdir)
logger.info("Created telescope model at: %s" % outdir)
# Write position
fposition = os.path.join(outdir, "position.txt")
open(fposition, "w").writelines([
"# SKA1-low layout: %s\n" % self.infile,
"# Telescope center position (WGS84)\n",
"# longitude[deg] latitude[deg]\n",
"%.8f %.8f\n" % tuple(self.position_wgs84)
])
logger.info("Wrote telescope position: %s" % fposition)
# Write layout of stations
flayout = os.path.join(outdir, "layout.txt")
header = ["SKA1-low layout: %s" % self.infile,
"All stations layout",
"East[m] North[m] Up[m]"]
np.savetxt(flayout, self.layouts_enu, header="\n".join(header))
logger.info("Wrote station layouts: %s" % flayout)
# Write stations
N = len(self.labels)
for i, label in enumerate(self.labels):
stn_dir = os.path.join(outdir, label)
os.mkdir(stn_dir)
fstation = os.path.join(stn_dir, "layout.txt")
header = [
"Antenna elements layout",
"Station label: %s" % label,
"Number of antennas: %d" % self.stn_antennas,
"Station diameter: %.2f [m]" % self.stn_diameter,
"Antenna minimum separation: %.2f [m]" % self.ant_min_sep,
"X[m] Y[m]"
]
np.savetxt(fstation, np.column_stack(self.stn_layouts[i]),
header="\n".join(header))
logger.debug("Wrote layout for [#%d/%d] station: %s" %
(i+1, N, fstation))
logger.info("DONE wrote telescope model: %s" % outdir)
@staticmethod
def make_station_labels(labels, base="stn"):
"""
Make the labels for each station, which will also be used
as the sub-directory names for the output telescope model.
"""
N = len(labels)
ndigits = int(np.log10(N)) + 1
fmt = "{base}.%(id)0{ndigits}d.%(label)s".format(
base=base, ndigits=ndigits)
stnlabels = [fmt % {"id": i+1, "label": l}
for i, l in enumerate(labels)]
return stnlabels
@staticmethod
def rand_uniform_2d(n, r_max, min_sep, r_min=None):
"""
Generate 2D random points with a minimum separation within
a radius range (i.e., annulus/circle).
Credit:
* https://github.com/OxfordSKA/SKA1-low-layouts :
layouts/utilities/layout.py - Layout.rand_uniform_2d()
"""
grid_size = min(100, int(np.ceil(r_max * 2.0) / min_sep))
grid_cell = r_max * 2.0 / grid_size
scale = 1.0 / grid_cell
x, y = np.zeros(n), np.zeros(n)
grid = {
"start": np.zeros((grid_size, grid_size), dtype=int),
"end": np.zeros((grid_size, grid_size), dtype=int),
"count": np.zeros((grid_size, grid_size), dtype=int),
"next": np.zeros(n, dtype=int)
}
num_tries, max_tries, total_tries = 0, 0, 0
for j in range(n):
done = False
while not done:
xt, yt = np.random.rand(2) * 2*r_max - r_max
rt = (xt**2 + yt**2) ** 0.5
if rt + (min_sep/2.0) > r_max:
num_tries += 1
elif r_min and rt - (min_sep/2.0) < r_min:
num_tries += 1
else:
jx = int(round(xt + r_max) * scale)
jy = int(round(yt + r_max) * scale)
x0 = max(0, jx-2)
x1 = min(grid_size, jx+3)
y0 = max(0, jy-2)
y1 = min(grid_size, jy+3)
# Find the minimum spacing between the trial point
# and other points
d_min = r_max * 2.0
for ky in range(y0, y1):
for kx in range(x0, x1):
if grid["count"][ky, kx] > 0:
i_other = grid["start"][ky, kx]
for kh in range(grid["count"][ky, kx]):
dx = xt - x[i_other]
dy = yt - y[i_other]
d_other = (dx**2 + dy**2) ** 0.5
d_min = min(d_min, d_other)
i_other = grid["next"][i_other]
if d_min >= min_sep:
x[j], y[j] = xt, yt
if grid["count"][jy, jx] == 0:
grid["start"][jy, jx] = j
else:
grid["next"][grid["end"][jy, jx]] = j
grid["end"][jy, jx] = j
grid["count"][jy, jx] += 1
max_tries = max(max_tries, num_tries)
total_tries += num_tries
num_tries = 0
done = True
else:
num_tries += 1
info = {"max_tries": max_tries, "total_tries": total_tries}
return (x, y, info)
|