#ifndef BETA_MODEL2d2_H_ #define BETA_MODEL2d2_H_ #define OPT_HEADER #include #include #include #include "vecn.hpp" namespace opt_utilities { template class beta2d2 :public model,std::vector,std::string> { private: model,std::vector >* do_clone()const { return new beta2d2(*this); } public: beta2d2() { this->push_param_info(param_info >("r0",20)); this->push_param_info(param_info >("x0",100)); this->push_param_info(param_info >("y0",100)); this->push_param_info(param_info >("epsilon",0)); this->push_param_info(param_info >("theta",100)); this->push_param_info(param_info >("ampl",3)); this->push_param_info(param_info >("beta",2./3.)); this->push_param_info(param_info >("bkg",0)); } T do_eval(const vecn& xy,const std::vector& param) { T x=xy[0]; T y=xy[1]; T r0=get_element(param,0); T x0=get_element(param,1); T y0=get_element(param,2); T epsilon=get_element(param,3); T theta=get_element(param,4); T ampl=get_element(param,5); T beta=get_element(param,6); T bkg=get_element(param,7); T x_new=(x-x0)*cos(theta)+(y-y0)*sin(theta); T y_new=(y-y0)*cos(theta)-(x-x0)*sin(theta); //T _epsilon=sin(epsilon)-0.00001; T _epsilon=epsilon; // T r=sqrt(x_new*x_new*(1-_epsilon)*(1-_epsilon) // + y_new*y_new); //r/=(1-_epsilon); T r_r=x_new*x_new/exp(_epsilon)+y_new*y_new/exp(-_epsilon); return bkg+ampl*pow(1+r_r/r0/r0,-3*beta+static_cast(.5)); } }; } #endif //EOF