aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorAaron LI <aly@aaronly.me>2017-11-01 23:19:14 +0800
committerAaron LI <aly@aaronly.me>2017-11-01 23:19:14 +0800
commit390fec69c9499aa1182570f7a6001d4a9dfe9613 (patch)
tree29ef6902a83b514e40ff377d6010d73dcb356fad
parent851c8d7490eb3df860c7048ba3adc89db8d15a87 (diff)
downloadatoolbox-390fec69c9499aa1182570f7a6001d4a9dfe9613.tar.bz2
astro/calc_psd.py: correct that radial PSD is azimuthally averaged
-rwxr-xr-xastro/calc_psd.py39
1 files changed, 21 insertions, 18 deletions
diff --git a/astro/calc_psd.py b/astro/calc_psd.py
index fc7f7c0..70dab8c 100755
--- a/astro/calc_psd.py
+++ b/astro/calc_psd.py
@@ -5,8 +5,10 @@
#
"""
-Compute the radially averaged power spectral density (i.e., power spectrum)
-of a 2D image (in FITS format). The input image must be square.
+Compute the radial (i.e., azimuthally averaged) power spectral density
+(a.k.a. power spectrum) of a FITS image.
+
+NOTE: The input image must be square.
Credit
------
@@ -32,8 +34,8 @@ plt.style.use("ggplot")
class PSD:
"""
- Computes the 2D power spectral density and the radially averaged power
- spectral density (i.e., 1D power spectrum).
+ Computes the 2D power spectral density and the azimuthally averaged power
+ spectral density (i.e., 1D radial power spectrum).
"""
def __init__(self, image, pixel=(1.0, "pixel"), step=None):
self.image = np.array(image, dtype=np.float)
@@ -108,20 +110,21 @@ class PSD:
def calc_psd(self):
"""
- Computes the radially averaged power spectral density from the
- provided 2D power spectral density.
-
- Return:
- (freqs, radial_psd, radial_psd_err)
- freqs: spatial freqencies (unit: ${pixel_unit}^(-1))
- radial_psd: radially averaged power spectral density for each
- frequency
- radial_psd_err: standard deviations of each radial_psd
+ Azimuthally average the above 2D power spectral density to generate
+ the 1D radial power spectral density.
+
+ Returns
+ -------
+ frequencies: 1D float `~numpy.ndarray`
+ Spatial frequencies, [{pixel_unit}^(-1)]
+ psd1d, psd1d_err: 1D float `~numpy.ndarray`
+ Azimuthally averaged powers and their standard deviations at
+ each (radial) spatial frequency bin.
"""
if not hasattr(self, "ps2d") or self.psd2d is None:
self.calc_psd2d()
- print("Radially averaging 2D power spectral density ... ",
+ print("Azimuthally averaging 2D power spectral density ... ",
end="", flush=True)
dim = self.shape[0]
dim_half = (dim+1) // 2
@@ -176,7 +179,7 @@ class PSD:
def plot(self, ax=None, fig=None):
"""
- Make a plot of the radial (1D) PSD with matplotlib.
+ Make a plot of the 1D radial PSD with matplotlib.
"""
if ax is None:
fig, ax = plt.subplots(1, 1)
@@ -242,7 +245,7 @@ def open_image(infile):
def main():
parser = argparse.ArgumentParser(
- description="Calculate radially averaged power spectral density")
+ description="Calculate radial power spectral density")
parser.add_argument("-C", "--clobber", dest="clobber", action="store_true",
help="overwrite the output files if already exist")
parser.add_argument("-s", "--step", dest="step", type=float, default=None,
@@ -252,12 +255,12 @@ def main():
"at every frequency point will be calculated, " +
"i.e., using a even grid, which may be very slow " +
"for very large images!")
+ parser.add_argument("-p", "--plot", dest="plot", action="store_true",
+ help="plot the PSD and save as a PNG image")
parser.add_argument("-i", "--infile", dest="infile", required=True,
help="input FITS image")
parser.add_argument("-o", "--outfile", dest="outfile", required=True,
help="output TXT file to save the PSD data")
- parser.add_argument("-p", "--plot", dest="plot", action="store_true",
- help="plot the PSD and save as PNG image")
args = parser.parse_args()
if args.plot: