diff options
author | Aaron LI <aaronly.me@outlook.com> | 2016-04-19 15:00:03 +0800 |
---|---|---|
committer | Aaron LI <aaronly.me@outlook.com> | 2016-04-19 15:00:03 +0800 |
commit | ac62b7b58d39728f051c7fad7e89b9adbffe9a81 (patch) | |
tree | 06f5ed4c74f86243df2ae0265b2ad2c7353348c4 | |
parent | 2bacc105e03231940b87c3f6ddba6ec3675b60fc (diff) | |
download | atoolbox-ac62b7b58d39728f051c7fad7e89b9adbffe9a81.tar.bz2 |
Major update and rewrite to correct_crosstalk.py/crosstalk_deprojection.py
* Implement deprojection function
* Implement Monte Carlo function for spectral error estimation
-rwxr-xr-x | python/correct_crosstalk.py | 750 | ||||
-rwxr-xr-x | python/crosstalk_deprojection.py | 1726 |
2 files changed, 1726 insertions, 750 deletions
diff --git a/python/correct_crosstalk.py b/python/correct_crosstalk.py deleted file mode 100755 index 7d83912..0000000 --- a/python/correct_crosstalk.py +++ /dev/null @@ -1,750 +0,0 @@ -#!/usr/bin/env python3 -# -*- coding: utf-8 -*- -# -# References: -# [1] Definition of RMF and ARF file formats -# https://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/docs/memos/cal_gen_92_002/cal_gen_92_002.html -# [2] CIAO: Auxiliary Response File -# http://cxc.harvard.edu/ciao/dictionary/arf.html -# [3] CIAO: Redistribution Matrix File -# http://cxc.harvard.edu/ciao/dictionary/rmf.html -# [4] astropy - FITS format code -# http://docs.astropy.org/en/stable/io/fits/usage/table.html#column-creation -# [5] XSPEC - Spectral Fitting -# https://heasarc.gsfc.nasa.gov/docs/xanadu/xspec/manual/XspecSpectralFitting.html -# -# -# Weitian LI -# Created: 2016-03-26 -# Updated: 2016-04-06 -# -# ChangeLog: -# 2016-04-06: -# * Fix `RMF: get_rmfimg()' for XMM EPIC RMF -# 2016-04-02: -# * Interpolate ARF in order to match the spectral channel energies -# * Add version and date information -# * Update documentations -# * Update header history contents -# 2016-04-01: -# * Greatly update the documentations (e.g., description, sample config) -# * Add class `RMF' -# * Add method `get_energy()' for class `ARF' -# * Split out class `SpectrumSet' from `Spectrum' -# * Implement background subtraction -# * Add config `subtract_bkg' and corresponding argument -# -# XXX/FIXME: -# * SpectrumSet: estimate channel errors by Monte Carlo simulations -# -# TODO: -# * Spectrum: implement the grouping function (and quality columns) -# * Split classes ARF, RMF, Spectrum, and SpectrumSet to a separate module -# - -__version__ = "0.3.0" -__date__ = "2016-04-02" - - -""" -Correct the crosstalk effect of XMM spectra by subtracting the photons that -scattered from the surrounding regions due to the finite PSF, and by -compensating the photons that scattered to the surrounding regions, according -to the generated crosstalk ARFs by SAS `arfgen'. - - -Sample config file (in `ConfigObj' syntax): ------------------------------------------------------------ -verbose = True -clobber = False -# whether to subtract the background before crosstalk correction -subtract_bkg = True -# whether to fix the negative channel values due to spectral subtractions -fix_negative = True - -[...] -... - -[reg2] -outfile = cc_reg2.pi -spec = reg2.pi -arf = reg2.arf -rmf = reg2.rmf -bkg = reg2_bkg.pi - [[cross_in]] - [[[in1]]] - spec = reg1.pi - arf = reg1.arf - rmf = reg1.rmf - bkg = reg1_bkg.pi - cross_arf = reg_1-2.arf - [[[in2]]] - spec = reg3.pi - arf = reg3.arf - rmf = reg3.rmf - bkg = reg3_bkg.pi - cross_arf = reg_3-2.arf - [[cross_out]] - cross_arf = reg_2-1.arf, reg_2-3.arf - -[...] -... ------------------------------------------------------------ -""" - - -import numpy as np -import scipy as sp -import scipy.interpolate -from astropy.io import fits -from configobj import ConfigObj - -import sys -import os -import argparse -from datetime import datetime - - -class ARF: # {{{ - """ - Class to handle the ARF (ancillary/auxiliary response file), - which contains the combined instrumental effective area - (telescope/filter/detector) and the quantum efficiency (QE) as a - function of energy averaged over time. - The effective area is [cm^2], and the QE is [counts/photon]; they are - multiplied together to create the ARF, resulting in [cm^2 counts/photon]. - - **CAVEAT/NOTE**: - Generally, the "ENERG_LO" and "ENERG_HI" columns of an ARF are *different* - to the "E_MIN" and "E_MAX" columns of a RMF (which are corresponding - to the spectrum channel energies). - For the XMM EPIC *pn* and Chandra *ACIS*, the generated ARF does NOT have - the same number of data points to that of spectral channels, i.e., the - "ENERG_LO" and "ENERG_HI" columns of ARF is different to the "E_MIN" and - "E_MAX" columns of RMF. - Therefore it is necessary to interpolate and extrapolate the ARF curve - in order to match the spectrum (or RMF "EBOUNDS" extension). - As for the XMM EPIC *MOS1* and *MOS2*, the ARF data points match the - spectral channels, i.e., the energy positions of each ARF data point and - spectral channel are consistent. Thus the interpolation is not needed. - - References: - [1] CIAO: Auxiliary Response File - http://cxc.harvard.edu/ciao/dictionary/arf.html - [2] Definition of RMF and ARF file formats - https://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/docs/memos/cal_gen_92_002/cal_gen_92_002.html - """ - filename = None - fitsobj = None - # only consider the "SPECTRUM" extension - header = None - energ_lo = None - energ_hi = None - specresp = None - # function of the interpolated ARF - f_interp = None - - def __init__(self, filename): - self.filename = filename - self.fitsobj = fits.open(filename) - ext_specresp = self.fitsobj["SPECRESP"] - self.header = ext_specresp.header - self.energ_lo = ext_specresp.data["ENERG_LO"] - self.energ_hi = ext_specresp.data["ENERG_HI"] - self.specresp = ext_specresp.data["SPECRESP"] - - def get_data(self, copy=True): - if copy: - return self.specresp.copy() - else: - return self.specresp - - def get_energy(self, mean="geometric"): - """ - Return the mean energy values of the ARF. - - Arguments: - * mean: type of the mean energy: - + "geometric": geometric mean, i.e., e = sqrt(e_min*e_max) - + "arithmetic": arithmetic mean, i.e., e = 0.5*(e_min+e_max) - """ - if mean == "geometric": - energy = np.sqrt(self.energ_lo * self.energ_hi) - elif mean == "arithmetic": - energy = 0.5 * (self.energ_lo + self.energ_hi) - else: - raise ValueError("Invalid mean type: %s" % mean) - return energy - - def interpolate(self, x=None, verbose=False): - """ - Cubic interpolate the ARF curve using `scipy.interpolate' - - If the requested point is outside of the data range, the - fill value of *zero* is returned. - - Arguments: - * x: points at which the interpolation to be calculated. - - Return: - If x is None, then the interpolated function is returned, - otherwise, the interpolated data are returned. - """ - if not hasattr(self, "f_interp") or self.f_interp is None: - energy = self.get_energy() - arf = self.get_data(copy=False) - if verbose: - print("INFO: ARF interpolating (this may take a while) ...", - file=sys.stderr) - f_interp = sp.interpolate.interp1d(energy, arf, kind="cubic", - bounds_error=False, fill_value=0.0, assume_sorted=True) - self.f_interp = f_interp - if x is not None: - return self.f_interp(x) - else: - return self.f_interp -# class ARF }}} - - -class RMF: # {{{ - """ - Class to handle the RMF (redistribution matrix file), - which maps from energy space into detector pulse height (or position) - space. Since detectors are not perfect, this involves a spreading of - the observed counts by the detector resolution, which is expressed as - a matrix multiplication. - For X-ray spectral analysis, the RMF encodes the probability R(E,p) - that a detected photon of energy E will be assisgned to a given - channel value (PHA or PI) of p. - - The standard Legacy format [2] for the RMF uses a binary table in which - each row contains R(E,p) for a single value of E as a function of p. - Non-zero sequences of elements of R(E,p) are encoded using a set of - variable length array columns. This format is compact but hard to - manipulate and understand. - - **CAVEAT/NOTE**: - + See also the above ARF CAVEAT/NOTE. - + The "EBOUNDS" extension contains the `CHANNEL', `E_MIN' and `E_MAX' - columns. This `CHANNEL' is the same as that of a spectrum. Therefore, - the energy values determined from the `E_MIN' and `E_MAX' columns are - used to interpolate and extrapolate the ARF curve. - + The `ENERG_LO' and `ENERG_HI' columns of the "MATRIX" extension are - the same as that of a ARF. - - References: - [1] CIAO: Redistribution Matrix File - http://cxc.harvard.edu/ciao/dictionary/rmf.html - [2] Definition of RMF and ARF file formats - https://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/docs/memos/cal_gen_92_002/cal_gen_92_002.html - """ - filename = None - fitsobj = None - ## extension "MATRIX" - hdr_matrix = None - energ_lo = None - energ_hi = None - n_grp = None - f_chan = None - n_chan = None - # raw squeezed RMF matrix data - matrix = None - ## extension "EBOUNDS" - hdr_ebounds = None - channel = None - e_min = None - e_max = None - ## converted 2D RMF matrix/image from the squeezed binary table - # size: len(energ_lo) x len(channel) - rmfimg = None - - def __init__(self, filename): - self.filename = filename - self.fitsobj = fits.open(filename) - ## "MATRIX" extension - ext_matrix = self.fitsobj["MATRIX"] - self.hdr_matrix = ext_matrix.header - self.energ_lo = ext_matrix.data["ENERG_LO"] - self.energ_hi = ext_matrix.data["ENERG_HI"] - self.n_grp = ext_matrix.data["N_GRP"] - self.f_chan = ext_matrix.data["F_CHAN"] - self.n_chan = ext_matrix.data["N_CHAN"] - self.matrix = ext_matrix.data["MATRIX"] - ## "EBOUNDS" extension - ext_ebounds = self.fitsobj["EBOUNDS"] - self.hdr_ebounds = ext_ebounds.header - self.channel = ext_ebounds.data["CHANNEL"] - self.e_min = ext_ebounds.data["E_MIN"] - self.e_max = ext_ebounds.data["E_MAX"] - - def get_energy(self, mean="geometric"): - """ - Return the mean energy values of the RMF "EBOUNDS". - - Arguments: - * mean: type of the mean energy: - + "geometric": geometric mean, i.e., e = sqrt(e_min*e_max) - + "arithmetic": arithmetic mean, i.e., e = 0.5*(e_min+e_max) - """ - if mean == "geometric": - energy = np.sqrt(self.e_min * self.e_max) - elif mean == "arithmetic": - energy = 0.5 * (self.e_min + self.e_max) - else: - raise ValueError("Invalid mean type: %s" % mean) - return energy - - def get_rmfimg(self): - """ - Convert the RMF data in squeezed binary table (standard Legacy format) - to a 2D image/matrix. - """ - def _make_rmfimg_row(n_channel, dtype, f_chan, n_chan, mat_row): - # make sure that `f_chan' and `n_chan' are 1-D numpy array - f_chan = np.array(f_chan).reshape(-1) - f_chan -= 1 # FITS indices are 1-based - n_chan = np.array(n_chan).reshape(-1) - idx = np.concatenate([ np.arange(f, f+n) \ - for f, n in zip(f_chan, n_chan) ]) - rmfrow = np.zeros(n_channel, dtype=dtype) - rmfrow[idx] = mat_row - return rmfrow - # - if self.rmfimg is None: - # Make the 2D RMF matrix/image - n_energy = len(self.energ_lo) - n_channel = len(self.channel) - rmf_dtype = self.matrix[0].dtype - rmfimg = np.zeros(shape=(n_energy, n_channel), dtype=rmf_dtype) - for i in np.arange(n_energy)[self.n_grp > 0]: - rmfimg[i, :] = _make_rmfimg_row(n_channel, rmf_dtype, - self.f_chan[i], self.n_chan[i], self.matrix[i]) - self.rmfimg = rmfimg - return self.rmfimg - - def write_rmfimg(self, outfile, clobber=False): - rmfimg = self.get_rmfimg() - # merge headers - header = self.hdr_matrix.copy(strip=True) - header.extend(self.hdr_ebounds.copy(strip=True)) - outfits = fits.PrimaryHDU(data=rmfimg, header=header) - outfits.writeto(outfile, checksum=True, clobber=clobber) -# class RMF }}} - - -class Spectrum: # {{{ - """ - Class that deals with the X-ray spectrum file (usually *.pi). - """ - filename = None - # FITS object return by `fits.open()' - fitsobj = None - # header of "SPECTRUM" extension - header = None - # "SPECTRUM" extension data - channel = None - # name of the spectrum data column (i.e., type, "COUNTS" or "RATE") - spec_type = None - # unit of the spectrum data ("count" for "COUNTS", "count/s" for "RATE") - spec_unit = None - # spectrum data - spec_data = None - # several important keywords - EXPOSURE = None - BACKSCAL = None - RESPFILE = None - ANCRFILE = None - BACKFILE = None - # numpy dtype and FITS format code of the spectrum data - spec_dtype = None - spec_fits_format = None - - def __init__(self, filename): - self.filename = filename - self.fitsobj = fits.open(filename) - ext_spec = self.fitsobj["SPECTRUM"] - self.header = ext_spec.header.copy(strip=True) - colnames = ext_spec.columns.names - if "COUNTS" in colnames: - self.spec_type = "COUNTS" - elif "RATE" in colnames: - self.spec_type = "RATE" - else: - raise ValueError("Invalid spectrum file") - self.channel = ext_spec.data.columns["CHANNEL"].array - col_spec_data = ext_spec.data.columns[self.spec_type] - self.spec_data = col_spec_data.array.copy() - self.spec_unit = col_spec_data.unit - self.spec_dtype = col_spec_data.dtype - self.spec_fits_format = col_spec_data.format - # keywords - self.EXPOSURE = self.header.get("EXPOSURE") - self.BACKSCAL = self.header.get("BACKSCAL") - self.AREASCAL = self.header.get("AREASCAL") - self.RESPFILE = self.header.get("RESPFILE") - self.ANCRFILE = self.header.get("ANCRFILE") - self.BACKFILE = self.header.get("BACKFILE") - - def get_data(self, copy=True): - if copy: - return self.spec_data.copy() - else: - return self.spec_data - - def get_channel(self, copy=True): - if copy: - return self.channel.copy() - else: - return self.channel - - def reset_header_keywords(self, - keywords=["ANCRFILE", "RESPFILE", "BACKFILE"]): - """ - Reset the keywords to "NONE" to avoid confusion or mistakes. - """ - for kw in keywords: - if kw in self.header: - header[kw] = "NONE" - - def write(self, filename, clobber=False): - """ - Create a new "SPECTRUM" table/extension and replace the original - one, then write to output file. - """ - ext_spec_cols = fits.ColDefs([ - fits.Column(name="CHANNEL", format="I", array=self.channel), - fits.Column(name=self.spec_type, format=self.spec_fits_format, - unit=self.spec_unit, array=self.spec_data)]) - ext_spec = fits.BinTableHDU.from_columns(ext_spec_cols, - header=self.header) - self.fitsobj["SPECTRUM"] = ext_spec - self.fitsobj.writeto(filename, clobber=clobber, checksum=True) -# class Spectrum }}} - - -class SpectrumSet(Spectrum): # {{{ - """ - This class handles a set of spectrum, including the source spectrum, - RMF, ARF, and the background spectrum. - - **NOTE**: - The "COUNTS" column data are converted from "int32" to "float32", - since this spectrum will be subtracted/compensated according to the - ratios of ARFs. - """ - # ARF object for this spectrum - arf = None - # RMF object for this spectrum - rmf = None - # background Spectrum object for this spectrum - bkg = None - - # numpy dtype and FITS format code to which the spectrum data be - # converted if the data is "COUNTS" - _spec_dtype = np.float32 - _spec_fits_format = "E" - - def __init__(self, filename, arffile=None, rmffile=None, bkgfile=None): - super(self.__class__, self).__init__(filename) - # convert spectrum data type if necessary - if self.spec_data.dtype != self._spec_dtype: - self.spec_data = self.spec_data.astype(self._spec_dtype) - self.spec_dtype = self._spec_dtype - self.spec_fits_format = self._spec_fits_format - if arffile is not None: - self.arf = ARF(arffile) - if rmffile is not None: - self.rmf = RMF(rmffile) - if bkgfile is not None: - self.bkg = Spectrum(bkgfile) - - def get_energy(self, mean="geometric"): - """ - Get the energy values of each channel if RMF present. - - NOTE: - The "E_MIN" and "E_MAX" columns of the RMF is required to calculate - the spectrum channel energies. - And the channel energies are generally different to the "ENERG_LO" - and "ENERG_HI" of the corresponding ARF. - """ - if self.rmf is None: - return None - else: - return self.rmf.get_energy(mean=mean) - - def get_arf(self, mean="geometric", copy=True): - """ - Get the corresponding ARF curve data if the ARF presents. - - Return: - [ energy, resp ] - where the "energy" and "resp" are the ARF energy values and - spectral response array, respectively. - """ - if self.arf is None: - return None - else: - energy = self.arf.get_energy(mean=mean) - resp = self.arf.get_data(copy=copy) - return [ energy, resp ] - - def subtract_bkg(self, inplace=True, verbose=False): - """ - Subtract the background contribution from the source spectrum. - The `EXPOSURE' and `BACKSCAL' values are required to calculate - the fraction/ratio for the background subtraction. - - Arguments: - * inplace: whether replace the `spec_data' with the background- - subtracted spectrum data; If True, the attribute - `spec_bkg_subtracted' is also set to `True' when - the subtraction finished. - - Return: - background-subtracted spectrum data - """ - ratio = (self.EXPOSURE / self.bkg.EXPOSURE) * \ - (self.BACKSCAL / self.bkg.BACKSCAL) * \ - (self.AREASCAL / self.bkg.AREASCAL) - operation = " SUBTRACT_BACKGROUND: %s - %s * %s" % \ - (self.filename, ratio, self.bkg.filename) - if verbose: - print(operation, file=sys.stderr) - spec_data_subbkg = self.spec_data - ratio * self.bkg.get_data() - if inplace: - self.spec_data = spec_data_subbkg - self.spec_bkg_subtracted = True - # also record history - self.header.add_history(operation) - return spec_data_subbkg - - def subtract(self, spectrumset, cross_arf, verbose=False): - """ - Subtract the photons that originate from the surrounding regions - but were scattered into this spectrum due to the finite PSF. - - The background of this spectrum and the given spectrum should - both be subtracted before applying this subtraction for crosstalk - correction, as well as the below `compensate()' procedure. - - NOTE: - 1. The crosstalk ARF must be provided, since the `spectrumset.arf' - is required to be its ARF without taking crosstalk into account: - spec1_new = spec1 - spec2 * (cross_arf_2_to_1 / arf2) - 2. The ARF are interpolated to match the energies of spetral channels. - """ - operation = " SUBTRACT: %s - (%s/%s) * %s" % (self.filename, - cross_arf.filename, spectrumset.arf.filename, - spectrumset.filename) - if verbose: - print(operation, file=sys.stderr) - energy = self.get_energy() - arfresp_spec = spectrumset.arf.interpolate(x=energy, verbose=verbose) - arfresp_cross = cross_arf.interpolate(x=energy, verbose=verbose) - arf_ratio = arfresp_cross / arfresp_spec - # fix nan values due to division by zero - arf_ratio[np.isnan(arf_ratio)] = 0.0 - self.spec_data -= spectrumset.get_data() * arf_ratio - # record history - self.header.add_history(operation) - - def compensate(self, cross_arf, verbose=False): - """ - Compensate the photons that originate from this regions but were - scattered into the surrounding regions due to the finite PSF. - - formula: - spec1_new = spec1 + spec1 * (cross_arf_1_to_2 / arf1) - """ - operation = " COMPENSATE: %s + (%s/%s) * %s" % (self.filename, - cross_arf.filename, self.arf.filename, self.filename) - if verbose: - print(operation, file=sys.stderr) - energy = self.get_energy() - arfresp_this = self.arf.interpolate(x=energy, verbose=verbose) - arfresp_cross = cross_arf.interpolate(x=energy, verbose=verbose) - arf_ratio = arfresp_cross / arfresp_this - # fix nan values due to division by zero - arf_ratio[np.isnan(arf_ratio)] = 0.0 - self.spec_data += self.get_data() * arf_ratio - # record history - self.header.add_history(operation) - - def fix_negative(self, verbose=False): - """ - The subtractions may lead to negative counts, it may be necessary - to fix these channels with negative values. - """ - neg_counts = self.spec_data < 0 - N = len(neg_counts) - neg_channels = np.arange(N, dtype=np.int)[neg_counts] - if len(neg_channels) > 0: - print("WARNING: %d channels have NEGATIVE counts" % \ - len(neg_channels), file=sys.stderr) - i = 0 - while len(neg_channels) > 0: - i += 1 - if verbose: - if i == 1: - print("*** Fixing negative channels: iter %d..." % i, - end="", file=sys.stderr) - else: - print("%d..." % i, end="", file=sys.stderr) - for ch in neg_channels: - neg_val = self.spec_data[ch] - if ch < N-2: - self.spec_data[ch] = 0 - self.spec_data[(ch+1):(ch+3)] -= 0.5 * np.abs(neg_val) - else: - # just set to zero if it is the last 2 channels - self.spec_data[ch] = 0 - # update negative channels indices - neg_counts = self.spec_data < 0 - neg_channels = np.arange(N, dtype=np.int)[neg_counts] - if i > 0: - print("FIXED ***", file=sys.stderr) - # record history - self.header.add_history(" FIXED NEGATIVE CHANNELS") -# class SpectrumSet }}} - - -class Crosstalk: # {{{ - """ - Crosstalk correction. - """ - # `SpectrumSet' object for the spectrum to be corrected - spectrumset = None - # NOTE/XXX: do NOT use list (e.g., []) here, otherwise, all the - # instances will share these list properties. - # `SpectrumSet' and `ARF' objects corresponding to the spectra from - # which the photons were scattered into this spectrum. - cross_in_specset = None - cross_in_arf = None - # `ARF' objects corresponding to the regions to which the photons of - # this spectrum were scattered into. - cross_out_arf = None - # output filename to which write the corrected spectrum - outfile = None - - def __init__(self, config): - """ - Arguments: - * config: a section of the whole config file (`ConfigObj' object) - """ - self.cross_in_specset = [] - self.cross_in_arf = [] - self.cross_out_arf = [] - # this spectrum to be corrected - self.spectrumset = SpectrumSet(filename=config["spec"], - arffile=config["arf"], rmffile=config.get("rmf"), - bkgfile=config.get("bkg")) - # spectra and cross arf from which photons were scattered in - for reg_in in config["cross_in"].values(): - specset = SpectrumSet(filename=reg_in["spec"], - arffile=reg_in["arf"], rmffile=reg_in.get("rmf"), - bkgfile=reg_in.get("bkg")) - self.cross_in_specset.append(specset) - self.cross_in_arf.append(ARF(reg_in["cross_arf"])) - # regions into which the photons of this spectrum were scattered into - if "cross_out" in config.sections: - cross_arf = config["cross_out"].as_list("cross_arf") - for arffile in cross_arf: - self.cross_out_arf.append(ARF(arffile)) - # output filename - self.outfile = config["outfile"] - - def do_correction(self, subtract_bkg=True, fix_negative=False, - verbose=False): - """ - Perform the crosstalk correction. The background contribution - for each spectrum is subtracted first if `subtract_bkg' is True. - The basic correction procedures are recorded to the header. - """ - self.spectrumset.header.add_history("Crosstalk Correction BEGIN") - self.spectrumset.header.add_history(" TOOL: %s (v%s) @ %s" % (\ - os.path.basename(sys.argv[0]), __version__, - datetime.utcnow().isoformat())) - # background subtraction - if subtract_bkg: - if verbose: - print("INFO: subtract background ...", file=sys.stderr) - self.spectrumset.subtract_bkg(inplace=True, verbose=verbose) - # also apply background subtraction to the surrounding spectra - for specset in self.cross_in_specset: - specset.subtract_bkg(inplace=True, verbose=verbose) - # subtractions - if verbose: - print("INFO: apply subtractions ...", file=sys.stderr) - for specset, cross_arf in zip(self.cross_in_specset, - self.cross_in_arf): - self.spectrumset.subtract(spectrumset=specset, - cross_arf=cross_arf, verbose=verbose) - # compensations - if verbose: - print("INFO: apply compensations ...", file=sys.stderr) - for cross_arf in self.cross_out_arf: - self.spectrumset.compensate(cross_arf=cross_arf, - verbose=verbose) - # fix negative values in channels - if fix_negative: - if verbose: - print("INFO: fix negative channel values ...", file=sys.stderr) - self.spectrumset.fix_negative(verbose=verbose) - self.spectrumset.header.add_history("END Crosstalk Correction") - - def write(self, filename=None, clobber=False): - if filename is None: - filename = self.outfile - self.spectrumset.reset_header_keywords( - keywords=["ANCRFILE", "BACKFILE"]) - self.spectrumset.write(filename, clobber=clobber) -# class Crosstalk }}} - - -def set_argument(name, default, cmdargs, config): - value = default - if name in config.keys(): - value = config.as_bool(name) - value_cmd = vars(cmdargs)[name] - if value_cmd != default: - value = value_cmd # command arguments overwrite others - return value - - -def main(): - parser = argparse.ArgumentParser( - description="Correct the crosstalk effects for XMM EPIC spectra", - epilog="Version: %s (%s)" % (__version__, __date__)) - parser.add_argument("config", help="config file in which describes " +\ - "the crosstalk relations ('ConfigObj' syntax)") - parser.add_argument("-B", "--no-subtract-bkg", dest="subtract_bkg", - action="store_false", help="do NOT subtract background first") - parser.add_argument("-N", "--fix-negative", dest="fix_negative", - action="store_true", help="fix negative channel values") - parser.add_argument("-C", "--clobber", dest="clobber", - action="store_true", help="overwrite output file if exists") - parser.add_argument("-v", "--verbose", dest="verbose", - action="store_true", help="show verbose information") - args = parser.parse_args() - - config = ConfigObj(args.config) - - subtract_bkg = set_argument("subtract_bkg", True, args, config) - fix_negative = set_argument("fix_negative", False, args, config) - verbose = set_argument("verbose", False, args, config) - clobber = set_argument("clobber", False, args, config) - - for region in config.sections: - if verbose: - print("INFO: processing '%s' ..." % region, file=sys.stderr) - crosstalk = Crosstalk(config.get(region)) - crosstalk.do_correction(subtract_bkg=subtract_bkg, - fix_negative=fix_negative, verbose=verbose) - crosstalk.write(clobber=clobber) - - -if __name__ == "__main__": - main() - -# vim: set ts=4 sw=4 tw=0 fenc=utf-8 ft=python: # diff --git a/python/crosstalk_deprojection.py b/python/crosstalk_deprojection.py new file mode 100755 index 0000000..dd099b4 --- /dev/null +++ b/python/crosstalk_deprojection.py @@ -0,0 +1,1726 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +# +# References: +# [1] Definition of RMF and ARF file formats +# https://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/docs/memos/cal_gen_92_002/cal_gen_92_002.html +# [2] CIAO: Auxiliary Response File +# http://cxc.harvard.edu/ciao/dictionary/arf.html +# [3] CIAO: Redistribution Matrix File +# http://cxc.harvard.edu/ciao/dictionary/rmf.html +# [4] astropy - FITS format code +# http://docs.astropy.org/en/stable/io/fits/usage/table.html#column-creation +# [5] XSPEC - Spectral Fitting +# https://heasarc.gsfc.nasa.gov/docs/xanadu/xspec/manual/XspecSpectralFitting.html +# [6] Direct X-ray Spectra Deprojection +# https://www-xray.ast.cam.ac.uk/papers/dsdeproj/ +# Sanders & Fabian 2007, MNRAS, 381, 1381 +# +# +# Weitian LI +# Created: 2016-03-26 +# Updated: 2016-04-19 +# +# ChangeLog: +# 2016-04-19: +# * Ignore numpy error due to division by zero +# * Update tool description and sample configuration +# * Add two other main methods: `main_deprojection()' and `main_crosstalk()' +# * Add argument 'group_squeeze' to some methods for better performance +# * Rename from 'correct_crosstalk.py' to 'crosstalk_deprojection.py' +# 2016-04-18: +# * Implement deprojection function: class Deprojection +# * Support spectral grouping (supply the grouping specification) +# * Add grouping, estimate_errors, copy, randomize, etc. methods +# * Utilize the Monte Carlo techniques to estimate the final spectral errors +# * Collect all ARFs and RMFs within dictionaries +# 2016-04-06: +# * Fix `RMF: get_rmfimg()' for XMM EPIC RMF +# 2016-04-02: +# * Interpolate ARF in order to match the spectral channel energies +# * Add version and date information +# * Update documentations +# * Update header history contents +# 2016-04-01: +# * Greatly update the documentations (e.g., description, sample config) +# * Add class `RMF' +# * Add method `get_energy()' for class `ARF' +# * Split out class `SpectrumSet' from `Spectrum' +# * Implement background subtraction +# * Add config `subtract_bkg' and corresponding argument +# +# XXX/FIXME: +# * Deprojection: account for ARF differences across different regions +# +# TODO: +# * Split classes ARF, RMF, Spectrum, and SpectrumSet to a separate module +# + +__version__ = "0.5.0" +__date__ = "2016-04-19" + + +""" +Correct the crosstalk effect of XMM spectra by subtracting the photons +that scattered from the surrounding regions due to the finite PSF, and +by compensating the photons that scattered to the surrounding regions, +according to the generated crosstalk ARFs by SAS `arfgen'. + +After the crosstalk effect being corrected, the deprojection is performed +to deproject the crosstalk-corrected spectra to derive the spectra with +both the crosstalk effect and projection effect corrected. + + +Sample config file (in `ConfigObj' syntax): +----------------------------------------------------------- +# operation mode: deprojection, crosstalk, or both (default) +mode = both +# supply a *groupped* spectrum (from which the "GROUPING" and "QUALITY" +# are used to group all the following spectra) +grouping = spec_grp.pi +# whether to subtract the background before crosstalk correction +subtract_bkg = True +# whether to fix the negative channel values due to spectral subtractions +fix_negative = False +# Monte Carlo times for spectral error estimation +mc_times = 5000 +# show progress details and verbose information +verbose = True +# overwrite existing files +clobber = False + +[reg1] +... + +[reg2] +outfile = deprojcc_reg2.pi +spec = reg2.pi +arf = reg2.arf +rmf = reg2.rmf +bkg = reg2_bkg.pi + [[cross_in]] + [[[in1]]] + spec = reg1.pi + arf = reg1.arf + rmf = reg1.rmf + bkg = reg1_bkg.pi + cross_arf = reg_1-2.arf + [[[in2]]] + spec = reg3.pi + arf = reg3.arf + rmf = reg3.rmf + bkg = reg3_bkg.pi + cross_arf = reg_3-2.arf + [[cross_out]] + cross_arf = reg_2-1.arf, reg_2-3.arf + +[...] +... +----------------------------------------------------------- +""" + +WARNING = """ +********************************* WARNING ************************************ +The generated spectra are substantially modified (e.g., scale, add, subtract), +therefore, take special care when interpretating the fitting results, +especially the metal abundances and normalizations. +****************************************************************************** +""" + + +import sys +import os +import argparse +from datetime import datetime +from copy import copy + +import numpy as np +import scipy as sp +import scipy.interpolate +from astropy.io import fits +from configobj import ConfigObj + + +def group_data(data, grouping): + """ + Group the data with respect to the supplied `grouping' specification + (i.e., "GROUPING" columns of a spectrum). The channel counts of the + same group are summed up and assigned to the FIRST channel of this + group, while the OTHRE channels are all set to ZERO. + """ + data_grp = np.array(data).copy() + for i in reversed(range(len(data))): + if grouping[i] == 1: + # the beginning channel of a group + continue + else: + # other channels of a group + data_grp[i-1] += data_grp[i] + data_grp[i] = 0 + assert np.isclose(sum(data_grp), sum(data)) + return data_grp + + +class ARF: # {{{ + """ + Class to handle the ARF (ancillary/auxiliary response file), + which contains the combined instrumental effective area + (telescope/filter/detector) and the quantum efficiency (QE) as a + function of energy averaged over time. + The effective area is [cm^2], and the QE is [counts/photon]; they are + multiplied together to create the ARF, resulting in [cm^2 counts/photon]. + + **CAVEAT/NOTE**: + Generally, the "ENERG_LO" and "ENERG_HI" columns of an ARF are *different* + to the "E_MIN" and "E_MAX" columns of a RMF (which are corresponding + to the spectrum channel energies). + For the XMM EPIC *pn* and Chandra *ACIS*, the generated ARF does NOT have + the same number of data points to that of spectral channels, i.e., the + "ENERG_LO" and "ENERG_HI" columns of ARF is different to the "E_MIN" and + "E_MAX" columns of RMF. + Therefore it is necessary to interpolate and extrapolate the ARF curve + in order to match the spectrum (or RMF "EBOUNDS" extension). + As for the XMM EPIC *MOS1* and *MOS2*, the ARF data points match the + spectral channels, i.e., the energy positions of each ARF data point and + spectral channel are consistent. Thus the interpolation is not needed. + + References: + [1] CIAO: Auxiliary Response File + http://cxc.harvard.edu/ciao/dictionary/arf.html + [2] Definition of RMF and ARF file formats + https://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/docs/memos/cal_gen_92_002/cal_gen_92_002.html + """ + filename = None + fitsobj = None + # only consider the "SPECTRUM" extension + header = None + energ_lo = None + energ_hi = None + specresp = None + # function of the interpolated ARF + f_interp = None + # energies of the spectral channels + energy_channel = None + # spectral channel grouping specification + grouping = None + groupped = False + # groupped ARF channels with respect to the grouping + specresp_grp = None + + def __init__(self, filename): + self.filename = filename + self.fitsobj = fits.open(filename) + ext_specresp = self.fitsobj["SPECRESP"] + self.header = ext_specresp.header + self.energ_lo = ext_specresp.data["ENERG_LO"] + self.energ_hi = ext_specresp.data["ENERG_HI"] + self.specresp = ext_specresp.data["SPECRESP"] + + def get_data(self, groupped=False, group_squeeze=False, copy=True): + if groupped: + specresp = self.specresp_grp + if group_squeeze: + specresp = specresp[self.grouping == 1] + else: + specresp = self.specresp + if copy: + return specresp.copy() + else: + return specresp + + def get_energy(self, mean="geometric"): + """ + Return the mean energy values of the ARF. + + Arguments: + * mean: type of the mean energy: + + "geometric": geometric mean, i.e., e = sqrt(e_min*e_max) + + "arithmetic": arithmetic mean, i.e., e = 0.5*(e_min+e_max) + """ + if mean == "geometric": + energy = np.sqrt(self.energ_lo * self.energ_hi) + elif mean == "arithmetic": + energy = 0.5 * (self.energ_lo + self.energ_hi) + else: + raise ValueError("Invalid mean type: %s" % mean) + return energy + + def interpolate(self, x=None, verbose=False): + """ + Cubic interpolate the ARF curve using `scipy.interpolate' + + If the requested point is outside of the data range, the + fill value of *zero* is returned. + + Arguments: + * x: points at which the interpolation to be calculated. + + Return: + If x is None, then the interpolated function is returned, + otherwise, the interpolated data are returned. + """ + if not hasattr(self, "f_interp") or self.f_interp is None: + energy = self.get_energy() + arf = self.get_data(copy=False) + if verbose: + print("INFO: interpolating '%s' (this may take a while) ..." \ + % self.filename, file=sys.stderr) + f_interp = sp.interpolate.interp1d(energy, arf, kind="cubic", + bounds_error=False, fill_value=0.0, assume_sorted=True) + self.f_interp = f_interp + if x is not None: + return self.f_interp(x) + else: + return self.f_interp + + def apply_grouping(self, energy_channel, grouping, verbose=False): + """ + Group the ARF channels (INTERPOLATED with respect to the spectral + channels) by the supplied grouping specification. + + Arguments: + * energy_channel: energies of the spectral channel + * grouping: spectral grouping specification + + Return: `self.specresp_grp' + """ + if self.groupped: + return + if verbose: + print("INFO: Grouping spectrum '%s' ..." % self.filename, + file=sys.stderr) + self.energy_channel = energy_channel + self.grouping = grouping + # interpolate the ARF w.r.t the spectral channel energies + arf_interp = self.interpolate(x=energy_channel, verbose=verbose) + self.specresp_grp = group_data(arf_interp, grouping) + self.groupped = True +# class ARF }}} + + +class RMF: # {{{ + """ + Class to handle the RMF (redistribution matrix file), + which maps from energy space into detector pulse height (or position) + space. Since detectors are not perfect, this involves a spreading of + the observed counts by the detector resolution, which is expressed as + a matrix multiplication. + For X-ray spectral analysis, the RMF encodes the probability R(E,p) + that a detected photon of energy E will be assisgned to a given + channel value (PHA or PI) of p. + + The standard Legacy format [2] for the RMF uses a binary table in which + each row contains R(E,p) for a single value of E as a function of p. + Non-zero sequences of elements of R(E,p) are encoded using a set of + variable length array columns. This format is compact but hard to + manipulate and understand. + + **CAVEAT/NOTE**: + + See also the above ARF CAVEAT/NOTE. + + The "EBOUNDS" extension contains the `CHANNEL', `E_MIN' and `E_MAX' + columns. This `CHANNEL' is the same as that of a spectrum. Therefore, + the energy values determined from the `E_MIN' and `E_MAX' columns are + used to interpolate and extrapolate the ARF curve. + + The `ENERG_LO' and `ENERG_HI' columns of the "MATRIX" extension are + the same as that of a ARF. + + References: + [1] CIAO: Redistribution Matrix File + http://cxc.harvard.edu/ciao/dictionary/rmf.html + [2] Definition of RMF and ARF file formats + https://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/docs/memos/cal_gen_92_002/cal_gen_92_002.html + """ + filename = None + fitsobj = None + ## extension "MATRIX" + hdr_matrix = None + energ_lo = None + energ_hi = None + n_grp = None + f_chan = None + n_chan = None + # raw squeezed RMF matrix data + matrix = None + ## extension "EBOUNDS" + hdr_ebounds = None + channel = None + e_min = None + e_max = None + ## converted 2D RMF matrix/image from the squeezed binary table + # size: len(energ_lo) x len(channel) + rmfimg = None + + def __init__(self, filename): + self.filename = filename + self.fitsobj = fits.open(filename) + ## "MATRIX" extension + ext_matrix = self.fitsobj["MATRIX"] + self.hdr_matrix = ext_matrix.header + self.energ_lo = ext_matrix.data["ENERG_LO"] + self.energ_hi = ext_matrix.data["ENERG_HI"] + self.n_grp = ext_matrix.data["N_GRP"] + self.f_chan = ext_matrix.data["F_CHAN"] + self.n_chan = ext_matrix.data["N_CHAN"] + self.matrix = ext_matrix.data["MATRIX"] + ## "EBOUNDS" extension + ext_ebounds = self.fitsobj["EBOUNDS"] + self.hdr_ebounds = ext_ebounds.header + self.channel = ext_ebounds.data["CHANNEL"] + self.e_min = ext_ebounds.data["E_MIN"] + self.e_max = ext_ebounds.data["E_MAX"] + + def get_energy(self, mean="geometric"): + """ + Return the mean energy values of the RMF "EBOUNDS". + + Arguments: + * mean: type of the mean energy: + + "geometric": geometric mean, i.e., e = sqrt(e_min*e_max) + + "arithmetic": arithmetic mean, i.e., e = 0.5*(e_min+e_max) + """ + if mean == "geometric": + energy = np.sqrt(self.e_min * self.e_max) + elif mean == "arithmetic": + energy = 0.5 * (self.e_min + self.e_max) + else: + raise ValueError("Invalid mean type: %s" % mean) + return energy + + def get_rmfimg(self): + """ + Convert the RMF data in squeezed binary table (standard Legacy format) + to a 2D image/matrix. + """ + def _make_rmfimg_row(n_channel, dtype, f_chan, n_chan, mat_row): + # make sure that `f_chan' and `n_chan' are 1-D numpy array + f_chan = np.array(f_chan).reshape(-1) + f_chan -= 1 # FITS indices are 1-based + n_chan = np.array(n_chan).reshape(-1) + idx = np.concatenate([ np.arange(f, f+n) \ + for f, n in zip(f_chan, n_chan) ]) + rmfrow = np.zeros(n_channel, dtype=dtype) + rmfrow[idx] = mat_row + return rmfrow + # + if self.rmfimg is None: + # Make the 2D RMF matrix/image + n_energy = len(self.energ_lo) + n_channel = len(self.channel) + rmf_dtype = self.matrix[0].dtype + rmfimg = np.zeros(shape=(n_energy, n_channel), dtype=rmf_dtype) + for i in np.arange(n_energy)[self.n_grp > 0]: + rmfimg[i, :] = _make_rmfimg_row(n_channel, rmf_dtype, + self.f_chan[i], self.n_chan[i], self.matrix[i]) + self.rmfimg = rmfimg + return self.rmfimg + + def write_rmfimg(self, outfile, clobber=False): + rmfimg = self.get_rmfimg() + # merge headers + header = self.hdr_matrix.copy(strip=True) + header.extend(self.hdr_ebounds.copy(strip=True)) + outfits = fits.PrimaryHDU(data=rmfimg, header=header) + outfits.writeto(outfile, checksum=True, clobber=clobber) +# class RMF }}} + + +class Spectrum: # {{{ + """ + Class that deals with the X-ray spectrum file (usually *.pi). + """ + filename = None + # FITS object return by `fits.open()' + fitsobj = None + # header of "SPECTRUM" extension + header = None + # "SPECTRUM" extension data + channel = None + # name of the spectrum data column (i.e., type, "COUNTS" or "RATE") + spec_type = None + # unit of the spectrum data ("count" for "COUNTS", "count/s" for "RATE") + spec_unit = None + # spectrum data + spec_data = None + # estimated spectral errors for each channel/group + spec_err = None + # statistical errors for each channel/group + stat_err = None + # grouping and quality + grouping = None + quality = None + # whether the spectral data being groupped + groupped = False + # several important keywords + EXPOSURE = None + BACKSCAL = None + RESPFILE = None + ANCRFILE = None + BACKFILE = None + # numpy dtype and FITS format code of the spectrum data + spec_dtype = None + spec_fits_format = None + # output filename for writing the spectrum if no filename provided + outfile = None + + def __init__(self, filename, outfile=None): + self.filename = filename + self.fitsobj = fits.open(filename) + ext_spec = self.fitsobj["SPECTRUM"] + self.header = ext_spec.header.copy(strip=True) + colnames = ext_spec.columns.names + if "COUNTS" in colnames: + self.spec_type = "COUNTS" + elif "RATE" in colnames: + self.spec_type = "RATE" + else: + raise ValueError("Invalid spectrum file") + self.channel = ext_spec.data.columns["CHANNEL"].array + col_spec_data = ext_spec.data.columns[self.spec_type] + self.spec_data = col_spec_data.array.copy() + self.spec_unit = col_spec_data.unit + self.spec_dtype = col_spec_data.dtype + self.spec_fits_format = col_spec_data.format + # grouping and quality + if "GROUPING" in colnames: + self.grouping = ext_spec.data.columns["GROUPING"].array + if "QUALITY" in colnames: + self.quality = ext_spec.data.columns["QUALITY"].array + # keywords + self.EXPOSURE = self.header.get("EXPOSURE") + self.BACKSCAL = self.header.get("BACKSCAL") + self.AREASCAL = self.header.get("AREASCAL") + self.RESPFILE = self.header.get("RESPFILE") + self.ANCRFILE = self.header.get("ANCRFILE") + self.BACKFILE = self.header.get("BACKFILE") + # output filename + self.outfile = outfile + + def get_data(self, group_squeeze=False, copy=True): + """ + Get the spectral data (i.e., self.spec_data). + + Arguments: + * group_squeeze: whether squeeze the spectral data according to + the grouping (i.e., exclude the channels that + are not the first channel of the group, which + also have value of ZERO). + This argument is effective only the grouping + being applied. + """ + if group_squeeze and self.groupped: + spec_data = self.spec_data[self.grouping == 1] + else: + spec_data = self.spec_data + if copy: + return spec_data.copy() + else: + return spec_data + + def get_channel(self, copy=True): + if copy: + return self.channel.copy() + else: + return self.channel + + def set_data(self, spec_data, group_squeeze=True): + """ + Set the spectral data of this spectrum to the supplied data. + """ + if group_squeeze and self.groupped: + assert sum(self.grouping == 1) == len(spec_data) + self.spec_data[self.grouping == 1] = spec_data + else: + assert len(self.spec_data) == len(spec_data) + self.spec_data = spec_data.copy() + + def add_stat_err(self, stat_err, group_squeeze=True): + """ + Add the "STAT_ERR" column as the statistical errors of each spectral + group, which are estimated by utilizing the Monte Carlo techniques. + """ + self.stat_err = np.zeros(self.spec_data.shape, + dtype=self.spec_data.dtype) + if group_squeeze and self.groupped: + assert sum(self.grouping == 1) == len(stat_err) + self.stat_err[self.grouping == 1] = stat_err + else: + assert len(self.stat_err) == len(stat_err) + self.stat_err = stat_err.copy() + self.header["POISSERR"] = False + + def apply_grouping(self, grouping=None, quality=None): + """ + Apply the spectral channel grouping specification to the spectrum. + + NOTE: + * The spectral data (i.e., self.spec_data) is MODIFIED! + * The spectral data within the same group are summed up. + * The self grouping is overwritten if `grouping' is supplied, as well + as the self quality. + """ + if grouping is not None: + self.grouping = grouping + if quality is not None: + self.quality = quality + self.spec_data = group_data(self.spec_data, self.grouping) + self.groupped = True + + def estimate_errors(self, gehrels=True): + """ + Estimate the statistical errors of each spectral group (after + applying grouping) for the source spectrum (and background spectrum). + + If `gehrels=True', the statistical error for a spectral group with + N photons is given by `1 + sqrt(N + 0.75)'; otherwise, the error + is given by `sqrt(N)'. + + Results: `self.spec_err' + """ + eps = 1.0e-10 + if gehrels: + self.spec_err = 1.0 + np.sqrt(self.spec_data + 0.75) + else: + self.spec_err = np.sqrt(self.spec_data) + # replace the zeros with a very small value (because + # `np.random.normal' requires `scale' > 0) + self.spec_err[self.spec_err <= 0.0] = eps + + def copy(self): + """ + Return a copy of this object, with the `np.ndarray' properties are + copied. + """ + new = copy(self) + for k, v in self.__dict__.items(): + if isinstance(v, np.ndarray): + setattr(new, k, v.copy()) + return new + + def randomize(self): + """ + Randomize the spectral data according to the estimated spectral + group errors by assuming the normal distribution. + + NOTE: this method should be called AFTER the `copy()' method. + """ + if self.spec_err is None: + raise ValueError("No valid 'spec_err' presents") + if self.groupped: + idx = self.grouping == 1 + self.spec_data[idx] = np.random.normal(self.spec_data[idx], + self.spec_err[idx]) + else: + self.spec_data = np.random.normal(self.spec_data, self.spec_err) + return self + + def reset_header_keywords(self, + keywords=["ANCRFILE", "RESPFILE", "BACKFILE"]): + """ + Reset the keywords to "NONE" to avoid confusion or mistakes. + """ + for kw in keywords: + if kw in self.header: + self.header[kw] = "NONE" + + def write(self, filename=None, clobber=False): + """ + Create a new "SPECTRUM" table/extension and replace the original + one, then write to output file. + """ + if filename is None: + filename = self.outfile + columns = [ + fits.Column(name="CHANNEL", format="I", array=self.channel), + fits.Column(name=self.spec_type, format=self.spec_fits_format, + unit=self.spec_unit, array=self.spec_data), + ] + if self.grouping is not None: + columns.append(fits.Column(name="GROUPING", + format="I", array=self.grouping)) + if self.quality is not None: + columns.append(fits.Column(name="QUALITY", + format="I", array=self.quality)) + if self.stat_err is not None: + columns.append(fits.Column(name="STAT_ERR", unit=self.spec_unit, + format=self.spec_fits_format, + array=self.stat_err)) + ext_spec_cols = fits.ColDefs(columns) + ext_spec = fits.BinTableHDU.from_columns(ext_spec_cols, + header=self.header) + self.fitsobj["SPECTRUM"] = ext_spec + self.fitsobj.writeto(filename, clobber=clobber, checksum=True) +# class Spectrum }}} + + +class SpectrumSet(Spectrum): # {{{ + """ + This class handles a set of spectrum, including the source spectrum, + RMF, ARF, and the background spectrum. + + **NOTE**: + The "COUNTS" column data are converted from "int32" to "float32", + since this spectrum will be subtracted/compensated according to the + ratios of ARFs. + """ + # ARF object for this spectrum + arf = None + # RMF object for this spectrum + rmf = None + # background Spectrum object for this spectrum + bkg = None + # inner and outer radius of the region from which the spectrum extracted + radius_inner = None + radius_outer = None + # total angular range of the spectral region + angle = None + + # numpy dtype and FITS format code to which the spectrum data be + # converted if the data is "COUNTS" + #_spec_dtype = np.float32 + #_spec_fits_format = "E" + _spec_dtype = np.float64 + _spec_fits_format = "D" + + def __init__(self, filename, outfile=None, arf=None, rmf=None, bkg=None): + super().__init__(filename, outfile) + # convert spectrum data type if necessary + if self.spec_data.dtype != self._spec_dtype: + self.spec_data = self.spec_data.astype(self._spec_dtype) + self.spec_dtype = self._spec_dtype + self.spec_fits_format = self._spec_fits_format + if arf is not None: + if isinstance(arf, ARF): + self.arf = arf + else: + self.arf = ARF(arf) + if rmf is not None: + if isinstance(rmf, RMF): + self.rmf = rmf + else: + self.rmf = RMF(rmf) + if bkg is not None: + if isinstance(bkg, Spectrum): + self.bkg = bkg + else: + self.bkg = Spectrum(bkg) + # convert background spectrum data type if necessary + if self.bkg.spec_data.dtype != self._spec_dtype: + self.bkg.spec_data = self.bkg.spec_data.astype(self._spec_dtype) + self.bkg.spec_dtype = self._spec_dtype + self.bkg.spec_fits_format = self._spec_fits_format + + def get_energy(self, mean="geometric"): + """ + Get the energy values of each channel if RMF present. + + NOTE: + The "E_MIN" and "E_MAX" columns of the RMF is required to calculate + the spectrum channel energies. + And the channel energies are generally different to the "ENERG_LO" + and "ENERG_HI" of the corresponding ARF. + """ + if self.rmf is None: + return None + else: + return self.rmf.get_energy(mean=mean) + + def get_arf(self, mean="geometric", groupped=True, copy=True): + """ + Get the interpolated ARF data w.r.t the spectral channel energies + if the ARF presents. + + Arguments: + * groupped: (bool) whether to get the groupped ARF + + Return: (groupped) interpolated ARF data + """ + if self.arf is None: + return None + else: + return self.arf.get_data(groupped=groupped, copy=copy) + + def read_xflt(self): + """ + Read the XFLT000# keywords from the header, check the validity (e.g., + "XFLT0001" should equals "XFLT0002", "XFLT0003" should equals 0). + Sum all the additional XFLT000# pairs (e.g., ) which describes the + regions angluar ranges. + """ + eps = 1.0e-6 + xflt0001 = float(self.header["XFLT0001"]) + xflt0002 = float(self.header["XFLT0002"]) + xflt0003 = float(self.header["XFLT0003"]) + # XFLT000# validity check + assert np.isclose(xflt0001, xflt0002) + assert abs(xflt0003) < eps + # outer radius of the region + self.radius_outer = xflt0001 + # angular regions + self.angle = 0.0 + num = 4 + while True: + try: + angle_begin = float(self.header["XFLT%04d" % num]) + angle_end = float(self.header["XFLT%04d" % (num+1)]) + num += 2 + except KeyError: + break + self.angle += (angle_end - angle_begin) + # if NO additional XFLT000# keys exist, assume "annulus" region + if self.angle < eps: + self.angle = 360.0 + + def scale(self): + """ + Scale the spectral data (and spectral group errors if present) of + the source spectrum (and background spectra if present) according + to the region angular size to make it correspond to the whole annulus + region (i.e., 360 degrees). + + NOTE: the spectral data and errors (i.e., `self.spec_data', and + `self.spec_err') is MODIFIED! + """ + self.spec_data *= (360.0 / self.angle) + if self.spec_err is not None: + self.spec_err *= (360.0 / self.angle) + # also scale the background spectrum if present + if self.bkg: + self.bkg.spec_data *= (360.0 / self.angle) + if self.bkg.spec_err is not None: + self.bkg.spec_err *= (360.0 / self.angle) + + def apply_grouping(self, grouping=None, quality=None, verbose=False): + """ + Apply the spectral channel grouping specification to the source + spectrum, the ARF (which is used during the later spectral + manipulations), and the background spectrum (if presents). + + NOTE: + * The spectral data (i.e., self.spec_data) is MODIFIED! + * The spectral data within the same group are summed up. + * The self grouping is overwritten if `grouping' is supplied, as well + as the self quality. + """ + super().apply_grouping(grouping=grouping, quality=quality) + # also group the ARF accordingly + self.arf.apply_grouping(energy_channel=self.get_energy(), + grouping=self.grouping, verbose=verbose) + # group the background spectrum if present + if self.bkg: + self.bkg.spec_data = group_data(self.bkg.spec_data, self.grouping) + + def estimate_errors(self, gehrels=True): + """ + Estimate the statistical errors of each spectral group (after + applying grouping) for the source spectrum (and background spectrum). + + If `gehrels=True', the statistical error for a spectral group with + N photons is given by `1 + sqrt(N + 0.75)'; otherwise, the error + is given by `sqrt(N)'. + + Results: `self.spec_err' (and `self.bkg.spec_err') + """ + super().estimate_errors(gehrels=gehrels) + eps = 1.0e-10 + # estimate the errors for background spectrum if present + if self.bkg: + if gehrels: + self.bkg.spec_err = 1.0 + np.sqrt(self.bkg.spec_data + 0.75) + else: + self.bkg.spec_err = np.sqrt(self.bkg.spec_data) + self.bkg.spec_err[self.bkg.spec_err <= 0.0] = eps + + def subtract_bkg(self, inplace=True, verbose=False): + """ + Subtract the background contribution from the source spectrum. + The `EXPOSURE' and `BACKSCAL' values are required to calculate + the fraction/ratio for the background subtraction. + + Arguments: + * inplace: whether replace the `spec_data' with the background- + subtracted spectrum data; If True, the attribute + `spec_bkg_subtracted' is also set to `True' when + the subtraction finished. + The keywords "BACKSCAL" and "AREASCAL" are set to 1.0. + + Return: + background-subtracted spectrum data + """ + ratio = (self.EXPOSURE / self.bkg.EXPOSURE) * \ + (self.BACKSCAL / self.bkg.BACKSCAL) * \ + (self.AREASCAL / self.bkg.AREASCAL) + operation = " SUBTRACT_BACKGROUND: %s - %s * %s" % \ + (self.filename, ratio, self.bkg.filename) + if verbose: + print(operation, file=sys.stderr) + spec_data_subbkg = self.spec_data - ratio * self.bkg.get_data() + if inplace: + self.spec_data = spec_data_subbkg + self.spec_bkg_subtracted = True + self.BACKSCAL = 1.0 + self.AREASCAL = 1.0 + # also record history + self.header.add_history(operation) + return spec_data_subbkg + + def subtract(self, spectrumset, cross_arf, groupped=False, + group_squeeze=False, verbose=False): + """ + Subtract the photons that originate from the surrounding regions + but were scattered into this spectrum due to the finite PSF. + + The background of this spectrum and the given spectrum should + both be subtracted before applying this subtraction for crosstalk + correction, as well as the below `compensate()' procedure. + + NOTE: + 1. The crosstalk ARF must be provided, since the `spectrumset.arf' + is required to be its ARF without taking crosstalk into account: + spec1_new = spec1 - spec2 * (cross_arf_2_to_1 / arf2) + 2. The ARF are interpolated to match the energies of spetral channels. + """ + operation = " SUBTRACT: %s - (%s/%s) * %s" % (self.filename, + cross_arf.filename, spectrumset.arf.filename, + spectrumset.filename) + if verbose: + print(operation, file=sys.stderr) + energy = self.get_energy() + if groupped: + spectrumset.arf.apply_grouping(energy_channel=energy, + grouping=self.grouping, verbose=verbose) + cross_arf.apply_grouping(energy_channel=energy, + grouping=self.grouping, verbose=verbose) + arfresp_spec = spectrumset.arf.get_data(groupped=True, + group_squeeze=group_squeeze) + arfresp_cross = cross_arf.get_data(groupped=True, + group_squeeze=group_squeeze) + else: + arfresp_spec = spectrumset.arf.interpolate(x=energy, + verbose=verbose) + arfresp_cross = cross_arf.interpolate(x=energy, verbose=verbose) + with np.errstate(divide="ignore", invalid="ignore"): + arf_ratio = arfresp_cross / arfresp_spec + # fix nan/inf values due to division by zero + arf_ratio[ ~ np.isfinite(arf_ratio) ] = 0.0 + spec_data = self.get_data(group_squeeze=group_squeeze) - \ + spectrumset.get_data(group_squeeze=group_squeeze)*arf_ratio + self.set_data(spec_data, group_squeeze=group_squeeze) + # record history + self.header.add_history(operation) + + def compensate(self, cross_arf, groupped=False, group_squeeze=False, + verbose=False): + """ + Compensate the photons that originate from this regions but were + scattered into the surrounding regions due to the finite PSF. + + formula: + spec1_new = spec1 + spec1 * (cross_arf_1_to_2 / arf1) + """ + operation = " COMPENSATE: %s + (%s/%s) * %s" % (self.filename, + cross_arf.filename, self.arf.filename, self.filename) + if verbose: + print(operation, file=sys.stderr) + energy = self.get_energy() + if groupped: + cross_arf.apply_grouping(energy_channel=energy, + grouping=self.grouping, verbose=verbose) + arfresp_this = self.arf.get_data(groupped=True, + group_squeeze=group_squeeze) + arfresp_cross = cross_arf.get_data(groupped=True, + group_squeeze=group_squeeze) + else: + arfresp_this = self.arf.interpolate(x=energy, verbose=verbose) + arfresp_cross = cross_arf.interpolate(x=energy, verbose=verbose) + with np.errstate(divide="ignore", invalid="ignore"): + arf_ratio = arfresp_cross / arfresp_this + # fix nan/inf values due to division by zero + arf_ratio[ ~ np.isfinite(arf_ratio) ] = 0.0 + spec_data = self.get_data(group_squeeze=group_squeeze) + \ + self.get_data(group_squeeze=group_squeeze) * arf_ratio + self.set_data(spec_data, group_squeeze=group_squeeze) + # record history + self.header.add_history(operation) + + def fix_negative(self, verbose=False): + """ + The subtractions may lead to negative counts, it may be necessary + to fix these channels with negative values. + """ + neg_counts = self.spec_data < 0 + N = len(neg_counts) + neg_channels = np.arange(N, dtype=np.int)[neg_counts] + if len(neg_channels) > 0: + print("WARNING: %d channels have NEGATIVE counts" % \ + len(neg_channels), file=sys.stderr) + i = 0 + while len(neg_channels) > 0: + i += 1 + if verbose: + if i == 1: + print("*** Fixing negative channels: iter %d..." % i, + end="", file=sys.stderr) + else: + print("%d..." % i, end="", file=sys.stderr) + for ch in neg_channels: + neg_val = self.spec_data[ch] + if ch < N-2: + self.spec_data[ch] = 0 + self.spec_data[(ch+1):(ch+3)] -= 0.5 * np.abs(neg_val) + else: + # just set to zero if it is the last 2 channels + self.spec_data[ch] = 0 + # update negative channels indices + neg_counts = self.spec_data < 0 + neg_channels = np.arange(N, dtype=np.int)[neg_counts] + if i > 0: + print("FIXED!", file=sys.stderr) + # record history + self.header.add_history(" FIXED NEGATIVE CHANNELS") + + def set_radius_inner(self, radius_inner): + """ + Set the inner radius of the spectral region. + """ + assert radius_inner < self.radius_outer + self.radius_inner = radius_inner + + def copy(self): + """ + Return a copy of this object. + """ + new = super().copy() + if self.bkg: + new.bkg = self.bkg.copy() + return new + + def randomize(self): + """ + Randomize the source (and background if present) spectral data + according to the estimated spectral group errors by assuming the + normal distribution. + + NOTE: this method should be called AFTER the `copy()' method. + """ + super().randomize() + if self.bkg: + self.bkg.spec_data = np.random.normal(self.bkg.spec_data, + self.bkg.spec_err) + self.bkg.spec_data[self.grouping == -1] = 0.0 + return self +# class SpectrumSet }}} + + +class Crosstalk: # {{{ + """ + XMM-Newton PSF Crosstalk effect correction. + """ + # `SpectrumSet' object for the spectrum to be corrected + spectrumset = None + # NOTE/XXX: do NOT use list (e.g., []) here, otherwise, all the + # instances will share these list properties. + # `SpectrumSet' and `ARF' objects corresponding to the spectra from + # which the photons were scattered into this spectrum. + cross_in_specset = None + cross_in_arf = None + # `ARF' objects corresponding to the regions to which the photons of + # this spectrum were scattered into. + cross_out_arf = None + # grouping specification and quality data + grouping = None + quality = None + # whether the spectrum is groupped + groupped = False + + def __init__(self, config, arf_dict={}, rmf_dict={}, + grouping=None, quality=None): + """ + Arguments: + * config: a section of the whole config file (`ConfigObj' object) + """ + self.cross_in_specset = [] + self.cross_in_arf = [] + self.cross_out_arf = [] + # this spectrum to be corrected + self.spectrumset = SpectrumSet(filename=config["spec"], + outfile=config["outfile"], + arf=arf_dict.get(config["arf"], config["arf"]), + rmf=rmf_dict.get(config.get("rmf"), config.get("rmf")), + bkg=config.get("bkg")) + # spectra and cross arf from which photons were scattered in + for reg_in in config["cross_in"].values(): + specset = SpectrumSet(filename=reg_in["spec"], + arf=arf_dict.get(reg_in["arf"], reg_in["arf"]), + rmf=rmf_dict.get(reg_in.get("rmf"), reg_in.get("rmf")), + bkg=reg_in.get("bkg")) + self.cross_in_specset.append(specset) + self.cross_in_arf.append(arf_dict.get(reg_in["cross_arf"], + ARF(reg_in["cross_arf"]))) + # regions into which the photons of this spectrum were scattered into + if "cross_out" in config.sections: + cross_arf = config["cross_out"].as_list("cross_arf") + for arffile in cross_arf: + self.cross_out_arf.append(arf_dict.get(arffile, ARF(arffile))) + # grouping and quality + self.grouping = grouping + self.quality = quality + + def apply_grouping(self, verbose=False): + self.spectrumset.apply_grouping(grouping=self.grouping, + quality=self.quality, verbose=verbose) + # also group the related surrounding spectra + for specset in self.cross_in_specset: + specset.apply_grouping(grouping=self.grouping, + quality=self.quality, verbose=verbose) + self.groupped = True + + def estimate_errors(self, gehrels=True, verbose=False): + if verbose: + print("INFO: Estimating spectral errors ...") + self.spectrumset.estimate_errors(gehrels=gehrels) + # also estimate errors for the related surrounding spectra + for specset in self.cross_in_specset: + specset.estimate_errors(gehrels=gehrels) + + def do_correction(self, subtract_bkg=True, fix_negative=False, + group_squeeze=True, verbose=False): + """ + Perform the crosstalk correction. The background contribution + for each spectrum is subtracted first if `subtract_bkg' is True. + The basic correction procedures are recorded to the header. + """ + self.spectrumset.header.add_history("Crosstalk Correction BEGIN") + self.spectrumset.header.add_history(" TOOL: %s (v%s) @ %s" % (\ + os.path.basename(sys.argv[0]), __version__, + datetime.utcnow().isoformat())) + # background subtraction + if subtract_bkg: + if verbose: + print("INFO: subtract background ...", file=sys.stderr) + self.spectrumset.subtract_bkg(inplace=True, verbose=verbose) + # also apply background subtraction to the surrounding spectra + for specset in self.cross_in_specset: + specset.subtract_bkg(inplace=True, verbose=verbose) + # subtractions + if verbose: + print("INFO: apply subtractions ...", file=sys.stderr) + for specset, cross_arf in zip(self.cross_in_specset, + self.cross_in_arf): + self.spectrumset.subtract(spectrumset=specset, + cross_arf=cross_arf, groupped=self.groupped, + group_squeeze=group_squeeze, verbose=verbose) + # compensations + if verbose: + print("INFO: apply compensations ...", file=sys.stderr) + for cross_arf in self.cross_out_arf: + self.spectrumset.compensate(cross_arf=cross_arf, + groupped=self.groupped, group_squeeze=group_squeeze, + verbose=verbose) + # fix negative values in channels + if fix_negative: + if verbose: + print("INFO: fix negative channel values ...", file=sys.stderr) + self.spectrumset.fix_negative(verbose=verbose) + self.spectrumset.header.add_history("END Crosstalk Correction") + # reset header keywords + self.spectrumset.reset_header_keywords( + keywords=["ANCRFILE", "BACKFILE"]) + + def copy(self): + new = copy(self) + # properly handle the copy of spectrumsets + new.spectrumset = self.spectrumset.copy() + new.cross_in_specset = [ specset.copy() \ + for specset in self.cross_in_specset ] + return new + + def randomize(self): + self.spectrumset.randomize() + for specset in self.cross_in_specset: + specset.randomize() + return self + + def get_spectrum(self, copy=True): + if copy: + return self.spectrumset.copy() + else: + return self.spectrumset + + def write(self, filename=None, clobber=False): + self.spectrumset.write(filename=filename, clobber=clobber) +# class Crosstalk }}} + + +class Deprojection: # {{{ + """ + Perform the deprojection on a set of PROJECTED spectra with the + assumption of spherical symmetry of the source object, and produce + the DEPROJECTED spectra. + + NOTE: + * Assumption of the spherical symmetry + * Background should be subtracted before deprojection + * ARF differences of different regions are taken into account + + Reference & Credit: + [1] Direct X-ray Spectra Deprojection + https://www-xray.ast.cam.ac.uk/papers/dsdeproj/ + Sanders & Fabian 2007, MNRAS, 381, 1381 + """ + spectra = None + grouping = None + quality = None + + def __init__(self, spectra, grouping=None, quality=None, verbose=False): + """ + Arguments: + * spectra: a set of spectra from the inner-most to the outer-most + regions (e.g., spectra after correcting crosstalk effect) + * grouping: grouping specification for all the spectra + * quality: quality column for the spectra + """ + self.spectra = [] + for spec in spectra: + if not isinstance(spec, SpectrumSet): + raise ValueError("Not a 'SpectrumSet' object") + spec.read_xflt() + self.spectra.append(spec) + self.spectra = spectra + self.grouping = grouping + self.quality = quality + # sort spectra by `radius_outer' + self.spectra.sort(key=lambda x: x.radius_outer) + # set the inner radii + radii_inner = [0.0] + [ x.radius_outer for x in self.spectra[:-1] ] + for spec, rin in zip(self.spectra, radii_inner): + spec.set_radius_inner(rin) + if verbose: + print("Deprojection: loaded spectrum: radius: (%s, %s)" % \ + (spec.radius_inner, spec.radius_outer), + file=sys.stderr) + # check EXPOSURE validity (all spectra must have the same exposures) + exposures = [ spec.EXPOSURE for spec in self.spectra ] + assert np.allclose(exposures[:-1], exposures[1:]) + + def subtract_bkg(self, verbose=True): + for spec in self.spectra: + if not spec.bkg: + raise ValueError("Spectrum '%s' has NO background" % \ + spec.filename) + spec.subtract_bkg(inplace=True, verbose=verbose) + + def apply_grouping(self, verbose=False): + for spec in self.spectra: + spec.apply_grouping(grouping=self.grouping, quality=self.quality, + verbose=verbose) + + def estimate_errors(self, gehrels=True): + for spec in self.spectra: + spec.estimate_errors(gehrels=gehrels) + + def scale(self): + """ + Scale the spectral data according to the region angular size. + """ + for spec in self.spectra: + spec.scale() + + def do_deprojection(self, group_squeeze=True, verbose=True): + # + # TODO/XXX: How to apply ARF correction here??? + # + num_spec = len(self.spectra) + tmp_spec_data = self.spectra[0].get_data(group_squeeze=group_squeeze) + spec_shape = tmp_spec_data.shape + spec_dtype = tmp_spec_data.dtype + spec_per_vol = [None] * num_spec + # + for shellnum in reversed(range(num_spec)): + if verbose: + print("DEPROJECTION: deprojecting shell %d ..." % shellnum, + file=sys.stderr) + spec = self.spectra[shellnum] + # calculate projected spectrum of outlying shells + proj_spec = np.zeros(spec_shape, spec_dtype) + for outer in range(shellnum+1, num_spec): + vol = self.projected_volume( + r1=self.spectra[outer].radius_inner, + r2=self.spectra[outer].radius_outer, + R1=spec.radius_inner, + R2=spec.radius_outer) + proj_spec += spec_per_vol[outer] * vol + # + this_spec = spec.get_data(group_squeeze=group_squeeze, copy=True) + deproj_spec = this_spec - proj_spec + # calculate the volume that this spectrum is from + this_vol = self.projected_volume( + r1=spec.radius_inner, r2=spec.radius_outer, + R1=spec.radius_inner, R2=spec.radius_outer) + # calculate the spectral data per unit volume + spec_per_vol[shellnum] = deproj_spec / this_vol + # set the spectral data to these deprojected values + self.set_spec_data(spec_per_vol, group_squeeze=group_squeeze) + # add history to header + self.add_history() + + def get_spec_data(self, group_squeeze=True, copy=True): + """ + Extract the spectral data of each spectrum after deprojection + performed. + """ + return [ spec.get_data(group_squeeze=group_squeeze, copy=copy) + for spec in self.spectra ] + + def set_spec_data(self, spec_data, group_squeeze=True): + """ + Set `spec_data' for each spectrum to the deprojected spectral data. + """ + assert len(spec_data) == len(self.spectra) + for spec, data in zip(self.spectra, spec_data): + spec.set_data(data, group_squeeze=group_squeeze) + + def add_history(self): + """ + Append a brief history about this tool to the header. + """ + history = "Deprojected by %s (v%s) @ %s" % ( + os.path.basename(sys.argv[0]), __version__, + datetime.utcnow().isoformat()) + for spec in self.spectra: + spec.header.add_history(history) + + def add_stat_err(self, stat_err, group_squeeze=True): + """ + Add the "STAT_ERR" column to each spectrum. + """ + assert len(stat_err) == len(self.spectra) + for spec, err in zip(self.spectra, stat_err): + spec.add_stat_err(err, group_squeeze=group_squeeze) + + def write(self, filenames=[], clobber=False): + """ + Write the deprojected spectra to output file. + """ + if filenames == []: + filenames = [ spec.outfile for spec in self.spectra ] + for spec, outfile in zip(self.spectra, filenames): + spec.write(filename=outfile, clobber=clobber) + + @staticmethod + def projected_volume(r1, r2, R1, R2): + """ + Calculate the projected volume of a spherical shell of radii r1 -> r2 + onto an annulus on the sky of radius R1 -> R2. + + This volume is the integral: + Int(R=R1,R2) Int(x=sqrt(r1^2-R^2),sqrt(r2^2-R^2)) 2*pi*R dx dR + = + Int(R=R1,R2) 2*pi*R * (sqrt(r2^2-R^2) - sqrt(r1^2-R^2)) dR + + Note that the above integral is only half the total volume + (i.e., front only). + """ + def sqrt_trunc(x): + if x > 0: + return np.sqrt(x) + else: + return 0.0 + # + p1 = sqrt_trunc(r1**2 - R2**2) + p2 = sqrt_trunc(r1**2 - R1**2) + p3 = sqrt_trunc(r2**2 - R2**2) + p4 = sqrt_trunc(r2**2 - R1**2) + return 2.0 * (2.0/3.0) * np.pi * ((p1**3 - p2**3) + (p4**3 - p3**3)) +# class Deprojection }}} + + +# Helper functions {{{ +def calc_median_errors(results): + """ + Calculate the median and errors for the spectral data gathered + through Monte Carlo simulations. + + TODO: investigate the errors calculation approach used here! + """ + results = np.array(results) + # `results' now has shape: (mc_times, num_spec, num_channel) + # sort by the Monte Carlo simulation axis + results.sort(0) + mc_times = results.shape[0] + medians = results[ int(mc_times * 0.5) ] + lowerpcs = results[ int(mc_times * 0.1585) ] + upperpcs = results[ int(mc_times * 0.8415) ] + errors = np.sqrt(0.5 * ((medians-lowerpcs)**2 + (upperpcs-medians)**2)) + return (medians, errors) + + +def set_argument(name, default, cmdargs, config): + value = default + if name in config.keys(): + value = config.as_bool(name) + value_cmd = vars(cmdargs)[name] + if value_cmd != default: + value = value_cmd # command arguments overwrite others + return value +# helper functions }}} + + +# main routine {{{ +def main(config, subtract_bkg, fix_negative, mc_times, + verbose=False, clobber=False): + # collect ARFs and RMFs into dictionaries (avoid interpolation every time) + arf_files = set() + rmf_files = set() + for region in config.sections: + config_reg = config[region] + arf_files.add(config_reg.get("arf")) + rmf_files.add(config_reg.get("rmf")) + for reg_in in config_reg["cross_in"].values(): + arf_files.add(reg_in.get("arf")) + arf_files.add(reg_in.get("cross_arf")) + if "cross_out" in config_reg.sections: + for arf in config_reg["cross_out"].as_list("cross_arf"): + arf_files.add(arf) + arf_files = arf_files - set([None]) + arf_dict = { arf: ARF(arf) for arf in arf_files } + rmf_files = rmf_files - set([None]) + rmf_dict = { rmf: RMF(rmf) for rmf in rmf_files } + if verbose: + print("INFO: arf_files:", arf_files, file=sys.stderr) + print("INFO: rmf_files:", rmf_files, file=sys.stderr) + + # get the GROUPING and QUALITY data + grouping_fits = fits.open(config["grouping"]) + grouping = grouping_fits["SPECTRUM"].data.columns["GROUPING"].array + quality = grouping_fits["SPECTRUM"].data.columns["QUALITY"].array + # squeeze the groupped spectral data, etc. + group_squeeze = True + + # crosstalk objects (BEFORE background subtraction) + crosstalks_cleancopy = [] + # crosstalk-corrected spectra + cc_spectra = [] + + # correct crosstalk effects for each region first + for region in config.sections: + if verbose: + print("INFO: processing '%s' ..." % region, file=sys.stderr) + crosstalk = Crosstalk(config.get(region), + arf_dict=arf_dict, rmf_dict=rmf_dict, + grouping=grouping, quality=quality) + crosstalk.apply_grouping(verbose=verbose) + crosstalk.estimate_errors(verbose=verbose) + # keep a (almost) clean copy of the crosstalk object + crosstalks_cleancopy.append(crosstalk.copy()) + if verbose: + print("INFO: doing crosstalk correction ...", file=sys.stderr) + crosstalk.do_correction(subtract_bkg=subtract_bkg, + fix_negative=fix_negative, group_squeeze=group_squeeze, + verbose=verbose) + cc_spectra.append(crosstalk.get_spectrum(copy=True)) + + # load back the crosstalk-corrected spectra for deprojection + if verbose: + print("INFO: preparing spectra for deprojection ...", file=sys.stderr) + deprojection = Deprojection(spectra=cc_spectra, grouping=grouping, + quality=quality, verbose=verbose) + if verbose: + print("INFO: scaling spectra according the region angular size...", + file=sys.stderr) + deprojection.scale() + if verbose: + print("INFO: doing deprojection ...", file=sys.stderr) + deprojection.do_deprojection(verbose=verbose) + deproj_results = [ deprojection.get_spec_data( + group_squeeze=group_squeeze, copy=True) ] + + # Monte Carlo for spectral group error estimation + print("INFO: Monte Carlo to estimate spectral errors (%d times) ..." % \ + mc_times, file=sys.stderr) + for i in range(mc_times): + if i % 100 == 0: + print("%d..." % i, end="", flush=True, file=sys.stderr) + # correct crosstalk effects + cc_spectra_copy = [] + for crosstalk in crosstalks_cleancopy: + # copy and randomize + crosstalk_copy = crosstalk.copy().randomize() + crosstalk_copy.do_correction(subtract_bkg=subtract_bkg, + fix_negative=fix_negative, group_squeeze=group_squeeze, + verbose=False) + cc_spectra_copy.append(crosstalk_copy.get_spectrum(copy=True)) + # deproject spectra + deprojection_copy = Deprojection(spectra=cc_spectra_copy, + grouping=grouping, quality=quality, verbose=False) + deprojection_copy.scale() + deprojection_copy.do_deprojection(verbose=False) + deproj_results.append(deprojection_copy.get_spec_data( + group_squeeze=group_squeeze, copy=True)) + print("DONE!", flush=True, file=sys.stderr) + + if verbose: + print("INFO: Calculating the median and errors for each spectrum ...", + file=sys.stderr) + medians, errors = calc_median_errors(deproj_results) + deprojection.set_spec_data(medians, group_squeeze=group_squeeze) + deprojection.add_stat_err(errors, group_squeeze=group_squeeze) + if verbose: + print("INFO: Writing the crosstalk-corrected and deprojected " + \ + "spectra with estimated statistical errors ...", + file=sys.stderr) + deprojection.write(clobber=clobber) +# main routine }}} + + +# main_deprojection routine {{{ +def main_deprojection(config, mc_times, verbose=False, clobber=False): + """ + Only perform the spectral deprojection. + """ + # collect ARFs and RMFs into dictionaries (avoid interpolation every time) + arf_files = set() + rmf_files = set() + for region in config.sections: + config_reg = config[region] + arf_files.add(config_reg.get("arf")) + rmf_files.add(config_reg.get("rmf")) + arf_files = arf_files - set([None]) + arf_dict = { arf: ARF(arf) for arf in arf_files } + rmf_files = rmf_files - set([None]) + rmf_dict = { rmf: RMF(rmf) for rmf in rmf_files } + if verbose: + print("INFO: arf_files:", arf_files, file=sys.stderr) + print("INFO: rmf_files:", rmf_files, file=sys.stderr) + + # get the GROUPING and QUALITY data + grouping_fits = fits.open(config["grouping"]) + grouping = grouping_fits["SPECTRUM"].data.columns["GROUPING"].array + quality = grouping_fits["SPECTRUM"].data.columns["QUALITY"].array + # squeeze the groupped spectral data, etc. + group_squeeze = True + + # load spectra for deprojection + if verbose: + print("INFO: preparing spectra for deprojection ...", file=sys.stderr) + proj_spectra = [] + for region in config.sections: + config_reg = config[region] + specset = SpectrumSet(filename=config_reg["spec"], + outfile=config_reg["outfile"], + arf=arf_dict.get(config_reg["arf"], config_reg["arf"]), + rmf=rmf_dict.get(config_reg["rmf"], config_reg["rmf"]), + bkg=config_reg["bkg"]) + proj_spectra.append(specset) + + deprojection = Deprojection(spectra=proj_spectra, grouping=grouping, + quality=quality, verbose=verbose) + deprojection.apply_grouping(verbose=verbose) + deprojection.estimate_errors() + if verbose: + print("INFO: scaling spectra according the region angular size ...", + file=sys.stderr) + deprojection.scale() + + # keep a (almost) clean copy of the input projected spectra + proj_spectra_cleancopy = [ spec.copy() for spec in proj_spectra ] + + if verbose: + print("INFO: subtract the background ...", file=sys.stderr) + deprojection.subtract_bkg(verbose=verbose) + if verbose: + print("INFO: doing deprojection ...", file=sys.stderr) + deprojection.do_deprojection(verbose=verbose) + deproj_results = [ deprojection.get_spec_data( + group_squeeze=group_squeeze, copy=True) ] + + # Monte Carlo for spectral group error estimation + print("INFO: Monte Carlo to estimate spectral errors (%d times) ..." % \ + mc_times, file=sys.stderr) + for i in range(mc_times): + if i % 100 == 0: + print("%d..." % i, end="", flush=True, file=sys.stderr) + # copy and randomize the input projected spectra + proj_spectra_copy = [ spec.copy().randomize() + for spec in proj_spectra_cleancopy ] + # deproject spectra + deprojection_copy = Deprojection(spectra=proj_spectra_copy, + grouping=grouping, quality=quality, verbose=False) + deprojection_copy.subtract_bkg(verbose=False) + deprojection_copy.do_deprojection(verbose=False) + deproj_results.append(deprojection_copy.get_spec_data( + group_squeeze=group_squeeze, copy=True)) + print("DONE!", flush=True, file=sys.stderr) + + if verbose: + print("INFO: Calculating the median and errors for each spectrum ...", + file=sys.stderr) + medians, errors = calc_median_errors(deproj_results) + deprojection.set_spec_data(medians, group_squeeze=group_squeeze) + deprojection.add_stat_err(errors, group_squeeze=group_squeeze) + if verbose: + print("INFO: Writing the deprojected spectra " + \ + "with estimated statistical errors ...", + file=sys.stderr) + deprojection.write(clobber=clobber) +# main_deprojection routine }}} + + +# main_crosstalk routine {{{ +def main_crosstalk(config, subtract_bkg, fix_negative, mc_times, + verbose=False, clobber=False): + """ + Only perform the crosstalk correction. + """ + # collect ARFs and RMFs into dictionaries (avoid interpolation every time) + arf_files = set() + rmf_files = set() + for region in config.sections: + config_reg = config[region] + arf_files.add(config_reg.get("arf")) + rmf_files.add(config_reg.get("rmf")) + for reg_in in config_reg["cross_in"].values(): + arf_files.add(reg_in.get("arf")) + arf_files.add(reg_in.get("cross_arf")) + if "cross_out" in config_reg.sections: + for arf in config_reg["cross_out"].as_list("cross_arf"): + arf_files.add(arf) + arf_files = arf_files - set([None]) + arf_dict = { arf: ARF(arf) for arf in arf_files } + rmf_files = rmf_files - set([None]) + rmf_dict = { rmf: RMF(rmf) for rmf in rmf_files } + if verbose: + print("INFO: arf_files:", arf_files, file=sys.stderr) + print("INFO: rmf_files:", rmf_files, file=sys.stderr) + + # get the GROUPING and QUALITY data + if "grouping" in config.keys(): + grouping_fits = fits.open(config["grouping"]) + grouping = grouping_fits["SPECTRUM"].data.columns["GROUPING"].array + quality = grouping_fits["SPECTRUM"].data.columns["QUALITY"].array + group_squeeze = True + else: + grouping = None + quality = None + group_squeeze = False + + # crosstalk objects (BEFORE background subtraction) + crosstalks_cleancopy = [] + # crosstalk-corrected spectra + cc_spectra = [] + + # correct crosstalk effects for each region first + for region in config.sections: + if verbose: + print("INFO: processing '%s' ..." % region, file=sys.stderr) + crosstalk = Crosstalk(config.get(region), + arf_dict=arf_dict, rmf_dict=rmf_dict, + grouping=grouping, quality=quality) + if grouping is not None: + crosstalk.apply_grouping(verbose=verbose) + crosstalk.estimate_errors(verbose=verbose) + # keep a (almost) clean copy of the crosstalk object + crosstalks_cleancopy.append(crosstalk.copy()) + if verbose: + print("INFO: doing crosstalk correction ...", file=sys.stderr) + crosstalk.do_correction(subtract_bkg=subtract_bkg, + fix_negative=fix_negative, group_squeeze=group_squeeze, + verbose=verbose) + cc_spectra.append(crosstalk.get_spectrum(copy=True)) + + # spectral data of the crosstalk-corrected spectra + cc_results = [] + cc_results.append([ spec.get_data(group_squeeze=group_squeeze, copy=True) + for spec in cc_spectra ]) + + # Monte Carlo for spectral group error estimation + print("INFO: Monte Carlo to estimate spectral errors (%d times) ..." % \ + mc_times, file=sys.stderr) + for i in range(mc_times): + if i % 100 == 0: + print("%d..." % i, end="", flush=True, file=sys.stderr) + # correct crosstalk effects + cc_spectra_copy = [] + for crosstalk in crosstalks_cleancopy: + # copy and randomize + crosstalk_copy = crosstalk.copy().randomize() + crosstalk_copy.do_correction(subtract_bkg=subtract_bkg, + fix_negative=fix_negative, group_squeeze=group_squeeze, + verbose=False) + cc_spectra_copy.append(crosstalk_copy.get_spectrum(copy=True)) + cc_results.append([ spec.get_data(group_squeeze=group_squeeze, + copy=True) + for spec in cc_spectra_copy ]) + print("DONE!", flush=True, file=sys.stderr) + + if verbose: + print("INFO: Calculating the median and errors for each spectrum ...", + file=sys.stderr) + medians, errors = calc_median_errors(cc_results) + if verbose: + print("INFO: Writing the crosstalk-corrected spectra " + \ + "with estimated statistical errors ...", + file=sys.stderr) + for spec, data, err in zip(cc_spectra, medians, errors): + spec.set_data(data, group_squeeze=group_squeeze) + spec.add_stat_err(err, group_squeeze=group_squeeze) + spec.write(clobber=clobber) +# main_crosstalk routine }}} + + +if __name__ == "__main__": + # arguments' default values + default_mode = "both" + default_mc_times = 5000 + # commandline arguments parser + parser = argparse.ArgumentParser( + description="Correct the crosstalk effects for XMM EPIC spectra", + epilog="Version: %s (%s)" % (__version__, __date__)) + parser.add_argument("config", help="config file in which describes " +\ + "the crosstalk relations ('ConfigObj' syntax)") + parser.add_argument("-m", "--mode", dest="mode", default=default_mode, + help="operation mode (both | crosstalk | deprojection)") + parser.add_argument("-B", "--no-subtract-bkg", dest="subtract_bkg", + action="store_false", help="do NOT subtract background first") + parser.add_argument("-N", "--fix-negative", dest="fix_negative", + action="store_true", help="fix negative channel values") + parser.add_argument("-M", "--mc-times", dest="mc_times", + type=int, default=default_mc_times, + help="Monte Carlo times for error estimation") + parser.add_argument("-C", "--clobber", dest="clobber", + action="store_true", help="overwrite output file if exists") + parser.add_argument("-v", "--verbose", dest="verbose", + action="store_true", help="show verbose information") + args = parser.parse_args() + # merge commandline arguments and config + config = ConfigObj(args.config) + subtract_bkg = set_argument("subtract_bkg", True, args, config) + fix_negative = set_argument("fix_negative", False, args, config) + verbose = set_argument("verbose", False, args, config) + clobber = set_argument("clobber", False, args, config) + # operation mode + mode = config.get("mode", default_mode) + if args.mode != default_mode: + mode = args.mode + # Monte Carlo times + mc_times = config.as_int("mc_times") + if args.mc_times != default_mc_times: + mc_times = args.mc_times + + if mode.lower() == "both": + print("MODE: CROSSTALK + DEPROJECTION", file=sys.stderr) + main(config, subtract_bkg=subtract_bkg, fix_negative=fix_negative, + mc_times=mc_times, verbose=verbose, clobber=clobber) + elif mode.lower() == "deprojection": + print("MODE: DEPROJECTION", file=sys.stderr) + main_deprojection(config, mc_times=mc_times, + verbose=verbose, clobber=clobber) + elif mode.lower() == "crosstalk": + print("MODE: CROSSTALK", file=sys.stderr) + main_crosstalk(config, subtract_bkg=subtract_bkg, + fix_negative=fix_negative, mc_times=mc_times, + verbose=verbose, clobber=clobber) + else: + raise ValueError("Invalid operation mode: %s" % mode) + print(WARNING) + +# vim: set ts=4 sw=4 tw=0 fenc=utf-8 ft=python: # |