diff options
author | Aaron LI <aaronly.me@outlook.com> | 2016-04-22 15:05:09 +0800 |
---|---|---|
committer | Aaron LI <aaronly.me@outlook.com> | 2016-04-22 15:05:09 +0800 |
commit | eb3ec4582284b6717f96e874c93d9b89ca839eeb (patch) | |
tree | fe99763ace654660218620cbb4d38989943e04d8 | |
parent | d00a0e6293ff802d642a8c231dc4384a081977cf (diff) | |
download | atoolbox-eb3ec4582284b6717f96e874c93d9b89ca839eeb.tar.bz2 |
msvst_starlet.py: show more verbose information/details
-rwxr-xr-x | python/msvst_starlet.py | 61 |
1 files changed, 40 insertions, 21 deletions
diff --git a/python/msvst_starlet.py b/python/msvst_starlet.py index b90adf9..909cfac 100755 --- a/python/msvst_starlet.py +++ b/python/msvst_starlet.py @@ -11,9 +11,11 @@ # # Aaron LI # Created: 2016-03-17 -# Updated: 2016-04-20 +# Updated: 2016-04-22 # # ChangeLog: +# 2016-04-22: +# * Show more verbose information/details # 2016-04-20: # * Add argparse and main() for scripting # @@ -25,8 +27,8 @@ And multi-scale variance stabling transform (MS-VST), which can be used to effectively remove the Poisson noises. """ -__version__ = "0.2.0" -__date__ = "2016-04-20" +__version__ = "0.2.1" +__date__ = "2016-04-22" import sys @@ -379,7 +381,7 @@ class IUWT_VST(IUWT): # {{{ data_ivst = data ** 2 + cb - self.vst_coef[scale]["c"] return data_ivst - def is_significant(self, scale, fdr=0.1, independent=False): + def is_significant(self, scale, fdr=0.1, independent=False, verbose=False): """ Multiple hypothesis testing with false discovery rate (FDR) control. @@ -393,8 +395,8 @@ class IUWT_VST(IUWT): # {{{ https://en.wikipedia.org/wiki/False_discovery_rate """ coef = self.get_detail(scale) - pvalues = 2 * (1 - sp.stats.norm.cdf(np.abs(coef) / \ - self.vst_coef[scale]["std"])) + std = self.vst_coef[scale]["std"] + pvalues = 2.0 * (1.0 - sp.stats.norm.cdf(np.abs(coef) / std)) p_sorted = pvalues.flatten() p_sorted.sort() N = len(p_sorted) @@ -406,9 +408,13 @@ class IUWT_VST(IUWT): # {{{ comp = (p_sorted < p_comp) # cutoff p-value after FDR control/correction p_cutoff = np.max(p_sorted[comp]) + if verbose: + print("std/sigma: %g, p_cutoff: %g" % (std, p_cutoff), + flush=True, file=sys.stderr) return (pvalues <= p_cutoff, p_cutoff) - def denoise(self, fdr=0.1, fdr_independent=False): + def denoise(self, fdr=0.1, fdr_independent=False, start_scale=1, + verbose=False): """ Denoise the wavelet coefficients by controlling FDR. """ @@ -418,17 +424,29 @@ class IUWT_VST(IUWT): # {{{ # supports of significant coefficients of each scale self.sig_supports = [None] # make index match the scale self.p_cutoff = [None] + if verbose: + print("MSVST decomposing ...", flush=True, file=sys.stderr) for scale in range(1, self.level+1): coef = self.get_detail(scale) - sig, p_cutoff = self.is_significant(scale, fdr, fdr_independent) - coef[np.logical_not(sig)] = 0.0 + if verbose: + print("\tScale %d: " % scale, end="", + flush=True, file=sys.stderr) + if scale < start_scale: + if verbose: + print("skipped", flush=True, file=sys.stderr) + sig, p_cutoff = None, None + else: + sig, p_cutoff = self.is_significant(scale, fdr=fdr, + independent=fdr_independent, verbose=verbose) + coef[np.logical_not(sig)] = 0.0 + # self.denoised.append(coef) self.sig_supports.append(sig) self.p_cutoff.append(p_cutoff) # append the last approximation self.denoised.append(self.get_approx()) - def decompose(self, level, boundary="symm"): + def decompose(self, level=5, boundary="symm", verbose=False): """ 2D IUWT decomposition with VST. """ @@ -439,7 +457,12 @@ class IUWT_VST(IUWT): # {{{ self.calc_vst_coef() self.decomposition = [] approx = self.data + if verbose: + print("IUWT decomposing (%d levels): " % level, + end="", flush=True, file=sys.stderr) for scale in range(1, level+1): + if verbose: + print("%d..." % scale, end="", flush=True, file=sys.stderr) # approximation: approx2 = signal.convolve2d(self.data, self.filters[scale], mode="same", boundary=self.boundary) @@ -449,6 +472,8 @@ class IUWT_VST(IUWT): # {{{ if scale == level: self.decomposition.append(approx2) approx = approx2 + if verbose: + print("DONE!", flush=True, file=sys.stderr) return self.decomposition def reconstruct_ivst(self, denoised=True, positive_project=True): @@ -476,7 +501,7 @@ class IUWT_VST(IUWT): # {{{ self.reconstruction = reconstruction return reconstruction - def reconstruct(self, denoised=True, niter=20, verbose=False): + def reconstruct(self, denoised=True, niter=10, verbose=False): """ Reconstruct the original image using iterative method with L1 regularization, because the denoising violates the exact inverse @@ -552,7 +577,7 @@ def main(): action="store_true", default=False, help="whether the FDR null hypotheses are independent") parser.add_argument("-n", "--niter", dest="niter", - type=int, default=20, + type=int, default=10, help="number of iterations for reconstruction") parser.add_argument("-v", "--verbose", dest="verbose", action="store_true", default=False, @@ -576,15 +601,9 @@ def main(): img = imgfits[0].data # Remove Poisson noises msvst = IUWT_VST(data=img) - if args.verbose: - print("INFO: MSVST decomposing ...", file=sys.stderr) - msvst.decompose(level=args.level) - if args.verbose: - print("INFO: MSVST denosing ...", file=sys.stderr) - msvst.denoise(fdr=args.fdr, fdr_independent=args.fdr_independent) - if args.verbose: - print("INFO: MSVST reconstructing (this may take a while) ...", - file=sys.stderr) + msvst.decompose(level=args.level, verbose=args.verbose) + msvst.denoise(fdr=args.fdr, fdr_independent=args.fdr_independent, + verbose=args.verbose) msvst.reconstruct(denoised=True, niter=args.niter, verbose=args.verbose) img_denoised = msvst.reconstruction # Output |