aboutsummaryrefslogtreecommitdiffstats
path: root/astro/fg_fitsub.py
diff options
context:
space:
mode:
authorAaron LI <aly@aaronly.me>2017-12-02 11:46:52 +0800
committerAaron LI <aly@aaronly.me>2017-12-02 11:46:52 +0800
commit1664559631443ea59c248f45140ee857dc9a5b35 (patch)
tree038d76a0c1661cee979af9e5fd7fcb8c65c4d3bc /astro/fg_fitsub.py
parentfc5a0b6bd6deed81674f589d1be66fd0509094b1 (diff)
downloadatoolbox-1664559631443ea59c248f45140ee857dc9a5b35.tar.bz2
Add astro/fg_figsub.py: fit and subtract foreground by polynomial fitting
Diffstat (limited to 'astro/fg_fitsub.py')
-rwxr-xr-xastro/fg_fitsub.py167
1 files changed, 167 insertions, 0 deletions
diff --git a/astro/fg_fitsub.py b/astro/fg_fitsub.py
new file mode 100755
index 0000000..f1e8293
--- /dev/null
+++ b/astro/fg_fitsub.py
@@ -0,0 +1,167 @@
+#!/usr/bin/env python3
+#
+# Copyright (c) 2017 Weitian LI <weitian@aaronly.me>
+# MIT License
+#
+
+"""
+Fit the spectral-smooth foreground along the frequency axis (i.e.,
+line of sight for the 21 cm signal) using a polynomial in the linear
+scale for a series of simulated images (e.g., made by WSClean), then
+subtract the fitted smooth component to remove/reduce the foreground
+contamination.
+
+References
+----------
+* Liu, Tegmark & Zaldarriaga 2009, MNRAS, 394, 1575
+"""
+
+import os
+import sys
+import argparse
+import time
+import logging
+
+import numpy as np
+from astropy.io import fits
+
+
+logging.basicConfig(level=logging.INFO,
+ format="[%(levelname)s:%(lineno)d] %(message)s")
+logger = logging.getLogger()
+
+
+def open_image(infile):
+ """
+ Open the slice image and return its header and 2D image data.
+
+ NOTE
+ ----
+ The input slice image may have following dimensions:
+ * NAXIS=2: [Y, X]
+ * NAXIS=3: [FREQ=1, Y, X]
+ * NAXIS=4: [STOKES=1, FREQ=1, Y, X]
+
+ NOTE
+ ----
+ Only open slice image that has only ONE frequency and ONE Stokes
+ parameter.
+
+ Returns
+ -------
+ header : `~astropy.io.fits.Header`
+ image : 2D `~numpy.ndarray`
+ The 2D [Y, X] image part of the slice image.
+ """
+ with fits.open(infile) as f:
+ header = f[0].header
+ data = f[0].data
+ if data.ndim == 2:
+ # NAXIS=2: [Y, X]
+ image = data
+ elif data.ndim == 3 and data.shape[0] == 1:
+ # NAXIS=3: [FREQ=1, Y, X]
+ image = data[0, :, :]
+ elif data.ndim == 4 and data.shape[0] == 1 and data.shape[1] == 1:
+ # NAXIS=4: [STOKES=1, FREQ=1, Y, X]
+ image = data[0, 0, :, :]
+ else:
+ raise ValueError("Slice '{0}' has invalid dimensions: {1}".format(
+ infile, data.shape))
+ return (header, image)
+
+
+def get_frequency(header):
+ freq = None
+ try:
+ freq = header["FREQ"] # [MHz]
+ except KeyError:
+ try:
+ ctype3 = header["CTYPE3"]
+ if ctype3 == "FREQ":
+ freq = header["CRVAL3"] / 1e6 # [MHz]
+ except KeyError:
+ pass
+ return freq
+
+
+def main():
+ parser = argparse.ArgumentParser(
+ description="Subtract foreground through polynomial fitting")
+ parser.add_argument("-C", "--clobber", dest="clobber", action="store_true",
+ help="overwrite existing output file")
+ parser.add_argument("-p", "--poly-order", dest="poly_order",
+ type=int, default=2,
+ help="order of polynomial used for fitting " +
+ "(default: 2, i.e., quadratic)")
+ parser.add_argument("-o", "--outdir", dest="outdir", required=True,
+ help="output directory to store the subtracted images")
+ parser.add_argument("-i", "--infiles", dest="infiles", nargs="+",
+ help="input images slices (in order)")
+ args = parser.parse_args()
+
+ if not os.path.exists(args.outdir):
+ os.mkdir(args.outdir)
+ logger.info("Created output directory: %s" % args.outdir)
+ for infile in args.infiles:
+ outfile = os.path.join(args.outdir, os.path.basename(infile))
+ if os.path.exists(outfile):
+ if args.clobber:
+ os.remove(outfile)
+ logger.warning("Removed existing output file: %s" % outfile)
+ else:
+ raise OSError("Output file already exists: %s" % outfile)
+
+ nfiles = len(args.infiles)
+ logger.info("Number of images: %d" % nfiles)
+ headers = []
+ images = []
+ freqs = np.zeros(nfiles)
+ for i, infile in enumerate(args.infiles):
+ header, image = open_image(infile)
+ headers.append(header)
+ images.append(image)
+ freq = get_frequency(header)
+ if freq is None:
+ raise ValueError("no frequency for image: %s" % infile)
+ freqs[i] = freq
+ logger.info("Loaded slice #%d: %s @ %.2f [MHz]" % (i+1, infile, freq))
+
+ cube = np.stack(images)
+ nz, ny, nx = cube.shape
+ logger.info("Image cube dimensions: %dx%d * %d (slices)" % (nx, ny, nz))
+ cubeout = cube.copy()
+ npix = nx * ny
+ logger.info("Polynomial fitting order: %d" % args.poly_order)
+ t1 = time.perf_counter()
+ for i in range(npix):
+ if (i+1) % 10000 == 0:
+ t2 = time.perf_counter()
+ telapsed = (t2 - t1) / 60.0
+ teta = telapsed * (npix - i) / i
+ logger.info("%d/%d [%.2f%%] || elapsed %.1f / ETA %.1f [min] ..." %
+ (i+1, npix, 100*(i+1)/npix, telapsed, teta))
+ iy = i // ny
+ ix = i % ny
+ vlos = cube[:, iy, ix]
+ pfit = np.polyfit(freqs, vlos, deg=args.poly_order)
+ vfit = np.polyval(pfit, freqs)
+ cubeout[:, iy, ix] -= vfit
+
+ logger.info("Done fitting and subtracting foreground!")
+
+ for i, infile in enumerate(args.infiles):
+ outfile = os.path.join(args.outdir, os.path.basename(infile))
+ image = cubeout[i, :, :]
+ header = headers[i]
+ header.add_history(" ".join(sys.argv))
+ fits.PrimaryHDU(data=image, header=header).writeto(outfile)
+ logger.info("Wrote subtracted image slice: %s" % outfile)
+
+ t2 = time.perf_counter()
+ telapsed = (t2 - t1) / 60.0
+ logger.info("Running time: %.1f [min]" % telapsed)
+
+
+if __name__ == "__main__":
+ main()