aboutsummaryrefslogtreecommitdiffstats
path: root/astro/ps2d.py
diff options
context:
space:
mode:
authorAaron LI <aly@aaronly.me>2017-11-04 19:39:57 +0800
committerAaron LI <aly@aaronly.me>2017-11-04 19:39:57 +0800
commitee48765897fab98e85f3b5d791ea4b391e5b6edc (patch)
tree4fdcd342641cf4bc5e2a45ab8fde3dbc557292ff /astro/ps2d.py
parent53579251a8abf7487adc26849f1beedd534b3702 (diff)
downloadatoolbox-ee48765897fab98e85f3b5d791ea4b391e5b6edc.tar.bz2
astro/ps2d.py: default to calculate median and 68% IQR
* Add argument -m/--mean-std to calculate the original mean and std values * Add new header keyword "AvgType" to record this selection
Diffstat (limited to 'astro/ps2d.py')
-rwxr-xr-xastro/ps2d.py48
1 files changed, 43 insertions, 5 deletions
diff --git a/astro/ps2d.py b/astro/ps2d.py
index 4177d43..e3548b8 100755
--- a/astro/ps2d.py
+++ b/astro/ps2d.py
@@ -93,6 +93,9 @@ class PS2D:
cube image pixel size [arcsec]
frequencies : 1D `~numpy.ndarray`
frequencies at each image slice [MHz]
+ meanstd : bool, optional
+ if ``True``, calculate the mean and standard deviation for each
+ power bin instead of the median and 68% IQR.
window_name : str, optional
if specified, taper the cube along the frequency axis using the
specified window.
@@ -102,7 +105,7 @@ class PS2D:
unit of the cube data; will be used to determine the power spectrum
unit as well as the plot labels.
"""
- def __init__(self, cube, pixelsize, frequencies,
+ def __init__(self, cube, pixelsize, frequencies, meanstd=False,
window_name=None, window_width="extended", unit="???"):
logger.info("Initializing PS2D instance ...")
self.cube = np.array(cube, dtype=float)
@@ -131,6 +134,7 @@ class PS2D:
# Transverse comoving distance at zc; unit: [Mpc]
self.DMz = cosmo.comoving_transverse_distance(self.zc).value
+ self.meanstd = meanstd
self.window_name = window_name
self.window_width = window_width
self.window = self.gen_window(name=window_name, width=window_width)
@@ -184,11 +188,23 @@ class PS2D:
"""
Calculate the 2D power spectrum by cylindrically binning
the above 3D power spectrum.
+
+ Returns
+ -------
+ ps2d : 3D `~numpy.ndarray`
+ 3D array of shape (3, n_k_los, n_k_perp) including the median
+ and lower and upper errors (68% IQR) at each power bin.
+ If ``self.meanstd=True`` then the mean and standard deviation
+ are calculated instead.
+
+ Attributes
+ ----------
+ ps2d
"""
logger.info("Calculating 2D power spectrum ...")
n_k_perp = len(self.k_perp)
n_k_los = len(self.k_los)
- ps2d = np.zeros(shape=(n_k_los, n_k_perp)) # (k_los, k_perp)
+ ps2d = np.zeros(shape=(3, n_k_los, n_k_perp)) # value, errl, erru
eps = 1e-8
ic_xy = (np.abs(self.k_xy) < eps).nonzero()[0][0]
@@ -205,7 +221,16 @@ class PS2D:
for s in range(n_k_los):
iz = (p_z == s).nonzero()[0]
cells = np.concatenate([self.ps3d[z, iy, ix] for z in iz])
- ps2d[s, r] = cells.mean()
+ if self.meanstd:
+ ps2d[0, s, r] = cells.mean()
+ std = cells.std()
+ ps2d[1, s, r] = std
+ ps2d[2, s, r] = std
+ else:
+ median, q16, q84 = np.percentile(cells, q=(50, 16, 84))
+ ps2d[0, s, r] = median
+ ps2d[1, s, r] = median - q16
+ ps2d[2, s, r] = q84 - median
self.ps2d = ps2d
return ps2d
@@ -227,7 +252,8 @@ class PS2D:
"""
x = self.k_perp
y = self.k_los
- mappable = ax.pcolormesh(x[1:], y[1:], np.log10(self.ps2d[1:, 1:]),
+ mappable = ax.pcolormesh(x[1:], y[1:],
+ np.log10(self.ps2d[0, 1:, 1:]),
cmap="jet")
ax.set(xscale="log", yscale="log",
xlim=(x[1], x[-1]), ylim=(y[1], y[-1]),
@@ -389,6 +415,11 @@ class PS2D:
hdr["CONTENT"] = ("2D cylindrically averaged power spectrum",
"data product")
hdr["BUNIT"] = ("%s^2 Mpc^3" % self.unit, "data unit")
+ if self.meanstd:
+ hdr["AvgType"] = ("mean + standard deviation", "average type")
+ else:
+ hdr["AvgType"] = ("median + 68% IQR", "average type")
+
# Physical coordinates: IRAF LTM/LTV
# Li{Image} = LTMi_i * Pi{Physical} + LTVi
# Reference: ftp://iraf.noao.edu/iraf/web/projects/fitswcs/specwcs.html
@@ -396,6 +427,7 @@ class PS2D:
hdr["LTM1_1"] = 1.0 / dk_xy
hdr["LTV2"] = 0.0
hdr["LTM2_2"] = 1.0 / dk_z
+
# WCS physical coordinates
hdr["WCSTY1P"] = "PHYSICAL"
hdr["CTYPE1P"] = ("k_perp", "wavenumbers perpendicular to LoS")
@@ -409,6 +441,7 @@ class PS2D:
hdr["CRVAL2P"] = (0.0, "coordinate of the reference pixel")
hdr["CDELT2P"] = (dk_z, "coordinate delta/step")
hdr["CUNIT2P"] = ("Mpc^-1", "coordinate unit")
+
# Data information
hdr["PixSize"] = (self.pixelsize, "[arcsec] data cube pixel size")
hdr["Z_C"] = (self.zc, "data cube central redshift")
@@ -428,6 +461,11 @@ def main():
parser.add_argument("-C", "--clobber", dest="clobber",
action="store_true",
help="overwrite existing file")
+ parser.add_argument("-m", "--mean-std", dest="meanstd",
+ action="store_true",
+ help="calculate the mean and standard deviation " +
+ "for each averaged annulus instead of the median " +
+ "16%% and 84%% percentiles (i.e., 68%% IQR)")
parser.add_argument("-P", "--plot", dest="plot",
action="store_true",
help="plot the 2D power spectrum and save")
@@ -473,7 +511,7 @@ def main():
pixelsize = abs(wcs.wcs.cdelt[0]) * 3600 # [deg] -> [arcsec]
ps2d = PS2D(cube=cube, pixelsize=pixelsize, frequencies=frequencies,
- window_name=args.window, unit=bunit)
+ meanstd=args.meanstd, window_name=args.window, unit=bunit)
ps2d.calc_ps3d()
ps2d.calc_ps2d()
ps2d.save(outfile=args.outfile, clobber=args.clobber)