aboutsummaryrefslogtreecommitdiffstats
path: root/astro
diff options
context:
space:
mode:
authorAaron LI <aaronly.me@outlook.com>2017-05-13 15:36:11 +0800
committerAaron LI <aaronly.me@outlook.com>2017-05-13 15:36:11 +0800
commit52d582ab452a1f8aca61bcd903e91eb61ce66e2d (patch)
tree4c2139fdfcec96c262b67ad1904c4b8fe3e98d11 /astro
parent00538b6ccf1a1b19dd609d7566b3e4386caab2fd (diff)
downloadatoolbox-52d582ab452a1f8aca61bcd903e91eb61ce66e2d.tar.bz2
Add astro/oskar/{runOSKAR.py,vis2images.py}
Diffstat (limited to 'astro')
-rwxr-xr-xastro/oskar/runOSKAR.py564
-rwxr-xr-xastro/oskar/vis2images.py176
2 files changed, 740 insertions, 0 deletions
diff --git a/astro/oskar/runOSKAR.py b/astro/oskar/runOSKAR.py
new file mode 100755
index 0000000..fa0ce2d
--- /dev/null
+++ b/astro/oskar/runOSKAR.py
@@ -0,0 +1,564 @@
+#!/usr/bin/env python3
+#
+# Copyright (c) 2017 Weitian LI <liweitianux@live.com>
+# MIT license
+#
+# 2017-04-07
+#
+
+"""
+Run OSKAR to simulate the visibilities from the sky model specified
+by a FITS image.
+
+
+Credits
+-------
+[1] GitHub: OxfordSKA/OSKAR
+ https://github.com/OxfordSKA/OSKAR
+[2] GitHub: OxfordSKA/EoR - Emma_files/sim_tidy.py
+ https://github.com/OxfordSKA/EoR/blob/master/Emma_files/sim_tidy.py
+"""
+
+import os
+import sys
+import subprocess
+import configparser
+import argparse
+import logging
+
+import numpy as np
+import astropy.io.fits as fits
+import astropy.units as au
+import astropy.constants as ac
+from astropy.wcs import WCS
+
+
+logging.basicConfig(level=logging.INFO)
+logger = logging.getLogger(os.path.basename(sys.argv[0]))
+
+
+class Settings:
+ """
+ OSKAR settings manager.
+ """
+ def __init__(self, infile):
+ self.infile = infile
+ self.config = configparser.ConfigParser(interpolation=None)
+ self.config.read(infile)
+ logger.info("Read in configuration file: %s" % infile)
+ self.init_oskar_settings()
+ self.update_oskar_settings(self.config)
+
+ @property
+ def my_settings(self):
+ return self.config["my"]
+
+ @property
+ def dryrun(self):
+ return self.my_settings.getboolean("dryrun", fallback=False)
+
+ @property
+ def clobber(self):
+ return self.my_settings.getboolean("clobber", fallback=False)
+
+ @property
+ def quiet(self):
+ return self.my_settings.getboolean("quiet", fallback=False)
+
+ @property
+ def oskar_bin(self):
+ oskar = self.my_settings.get("oskar_bin",
+ fallback="oskar_sim_interferometer")
+ return os.path.expanduser(oskar)
+
+ @property
+ def output_settings_fn(self):
+ """
+ String format pattern for the output OSKAR settings file.
+ """
+ default = "settings/sim_interferometer_{freq:.2f}.ini"
+ return self.my_settings.get("output_settings_fn", fallback=default)
+
+ @property
+ def output_skymodel_fn(self):
+ """
+ String format pattern for the output OSKAR sky model file.
+ """
+ default = "skymodel/skymodel_{freq:.2f}.txt"
+ return self.my_settings.get("output_skymodel_fn", fallback=default)
+
+ @property
+ def output_skyfits_fn(self):
+ """
+ String format pattern for the output FITS slice of the sky model.
+ """
+ default = "skymodel/skymodel_{freq:.2f}.fits"
+ return self.my_settings.get("output_skyfits_fn", fallback=default)
+
+ @property
+ def output_ms_fn(self):
+ """
+ String format pattern for the output simulated visibility
+ data in MeasurementSet format.
+ """
+ default = "visibility/visibility_{freq:.2f}.ms"
+ return self.my_settings.get("output_ms_fn", fallback=default)
+
+ @property
+ def output_vis_fn(self):
+ """
+ String format pattern for the output simulated visibility
+ data in OSKAR binary format.
+ """
+ default = "visibility/visibility_{freq:.2f}.oskar"
+ return self.my_settings.get("output_vis_fn", fallback=default)
+
+ @property
+ def telescope_model(self):
+ """
+ Telescope model used for visibility simulations.
+ """
+ return self.my_settings["telescope_model"]
+
+ @property
+ def input_cube(self):
+ """
+ Input FITS spectral cube.
+ """
+ return self.my_settings["input_cube"]
+
+ @property
+ def image_size(self):
+ """
+ Width/X and height/Y of the input FITS image (unit: pixel)
+ """
+ size = self.my_settings["image_size"].split(",")
+ return (int(size[0]), int(size[1]))
+
+ @property
+ def image_pixsize(self):
+ """
+ Pixel size of the input FITS image (unit: arcsec)
+ """
+ return self.my_settings.getfloat("image_pixsize")
+
+ @property
+ def frequency(self):
+ """
+ Frequency of the input image. (unit: MHz)
+
+ NOTE: required if the above input FITS file is not a cube, but
+ a 2D image.
+ """
+ return self.my_settings.getfloat("frequency")
+
+ @property
+ def bandwidth(self):
+ """
+ Bandwidth of the input image. (unit: MHz)
+ """
+ return self.my_settings.getfloat("bandwidth")
+
+ @property
+ def ra0(self):
+ """
+ R.A. of the center of the input sky field.
+ unit: deg
+ """
+ return self.my_settings.getfloat("ra0", fallback=0.0)
+
+ @property
+ def dec0(self):
+ """
+ Dec. of the center of the input sky field.
+ unit: deg
+ """
+ return self.my_settings.getfloat("dec0", fallback=-27.0)
+
+ @property
+ def use_gpus(self):
+ """
+ Whether to GPUs
+ """
+ return self.my_settings.getboolean("use_gpus", fallback=False)
+
+ @property
+ def start_time(self):
+ """
+ Start time of the simulating observation
+ """
+ # This default time keeps 'EoR0' region above horizon for 12 hours.
+ # SKA EoR0 region: (ra, dec) = (0, -27) [deg]
+ default = "2000-01-01T03:30:00.000"
+ return self.my_settings.getfloat("start_time", fallback=default)
+
+ @property
+ def obs_length(self):
+ """
+ Observation length of time (unit: s).
+ """
+ default = 12.0 * 3600 # 12 hours
+ return self.my_settings.getfloat("obs_length", fallback=default)
+
+ @property
+ def obs_interval(self):
+ """
+ Observation interval providing the number of time steps in the
+ output data (unit: s).
+ """
+ default = 10.0 # [s]
+ return self.my_settings.getfloat("obs_interval", fallback=default)
+
+ @property
+ def time_average(self):
+ """
+ Correlator time-average duration to simulate time-averaging smearing
+ (unit: s).
+ """
+ default = 10.0 # [s]
+ return self.my_settings.getfloat("time_average", fallback=default)
+
+ def init_oskar_settings(self):
+ """
+ Initialize a `ConfigParser` instance with the default settings
+ for 'oskar_sim_interferometer'.
+ """
+ settings = configparser.ConfigParser()
+ settings.read_dict({
+ "General": {
+ "app": "oskar_sim_interferometer",
+ },
+ "simulator": {
+ "use_gpus": self.use_gpus,
+ "max_sources_per_chunk": 65536,
+ "double_precision": "true",
+ "keep_log_file": "true",
+ },
+ "sky": {
+ "advanced/apply_horizon_clip": "false",
+ },
+ "observation": {
+ "phase_centre_ra_deg": self.ra0,
+ "phase_centre_dec_deg": self.dec0,
+ "start_time_utc": self.start_time,
+ "length": self.obs_length,
+ "num_time_steps":
+ int(np.ceil(self.obs_length/self.obs_interval)),
+ "num_channels": 1,
+ },
+ "telescope": {
+ "input_directory": self.telescope_model,
+ "pol_mode": "Scalar",
+ "normalise_beams_at_phase_centre": "true",
+ "allow_station_beam_duplication": "true",
+ "aperture_array/array_pattern/enable": "true",
+ "aperture_array/element_pattern/functional_type": "Dipole",
+ "aperture_array/element_pattern/dipole_length": 0.5,
+ "aperture_array/element_pattern/dipole_length_units":
+ "Wavelengths",
+ "station_type": "Aperture array",
+ },
+ "interferometer": {
+ "channel_bandwidth_hz": self.bandwidth * 1e6,
+ "time_average_sec": self.time_average,
+ "uv_filter_min": "min",
+ "uv_filter_max": "max",
+ "uv_filter_units": "Wavelengths",
+ }
+ })
+ self.oskar_settings = settings
+ logger.info("Initialized 'oskar_settings'")
+
+ def update_oskar_settings(self, config):
+ """
+ Update the OSKAR settings with the loaded user configurations.
+ """
+ for section in self.oskar_settings.sections():
+ if section in config:
+ for key, value in config[section].items():
+ self.oskar_settings[section][key] = value
+ logger.info("oskar_settings: [%s]%s = %s" % (
+ section, key, value))
+ logger.info("Updated 'oskar_settings'")
+
+ def write_oskar_settings(self, outfile, clobber=False):
+ """
+ Write the settings file for 'oskar_sim_interferometer'.
+ """
+ if os.path.exists(outfile) and (not clobber):
+ raise OSError("oskar settings file already exists: " % outfile)
+ with open(outfile, "w") as fp:
+ # NOTE: OSKAR do NOT like space around '='
+ self.oskar_settings.write(fp, space_around_delimiters=False)
+ logger.info("Wrote oskar settings file: %s" % outfile)
+
+
+class SpectralCube:
+ """
+ Manipulate the FITS spectral cube.
+
+ NOTE: The FITS data as `numpy.ndarray` has the opposite index
+ ordering, which likes the Fortran style, i.e., fastest
+ changing axis last: data[frequency, y, x]
+ """
+ def __init__(self, infile):
+ self.infile = infile
+ with fits.open(infile) as hdulist:
+ self.header = hdulist[0].header
+ self.cube = hdulist[0].data
+ self.wcs = WCS(self.header)
+ logger.info("Loaded FITS spectral cube: %s" % infile)
+ logger.info("Spectral cube: width=%d, height=%d" %
+ (self.width, self.height))
+ if not self.is_cube:
+ logger.warning("NOT a spectral cube!")
+ else:
+ logger.info("Number of frequencies: %d" % self.nfreq)
+
+ @property
+ def naxis(self):
+ return self.header["NAXIS"]
+
+ @property
+ def is_cube(self):
+ return self.naxis == 3
+
+ @property
+ def width(self):
+ """
+ Width of the image, i.e., X axis.
+ """
+ return self.header["NAXIS1"]
+
+ @property
+ def height(self):
+ """
+ Height of the image, i.e., Y axis.
+ """
+ return self.header["NAXIS2"]
+
+ @property
+ def nfreq(self):
+ return self.header["NAXIS3"]
+
+ @property
+ def frequencies(self):
+ """
+ Frequencies of this cube. (unit: MHz)
+ If the input file is not a cube, then return 'None'.
+ """
+ if not self.is_cube:
+ logger.warning("Input FITS file is not a spectral cube: %s" %
+ self.infile)
+ return None
+
+ nfreq = self.nfreq
+ pix = np.zeros(shape=(nfreq, self.naxis), dtype=np.int)
+ pix[:, -1] = np.arange(nfreq)
+ world = self.wcs.wcs_pix2world(pix, 0)
+ freqMHz = world[:, -1] / 1e6 # Hz -> MHz
+ return freqMHz
+
+ def get_slice(self, nth=0):
+ """
+ Extract the specified nth frequency slice from the cube.
+ """
+ if not self.is_cube:
+ logger.warning("Input FITS file is not a spectral cube: %s" %
+ self.infile)
+ return self.cube
+ else:
+ return self.cube[nth, :, :]
+
+
+class SkyModel:
+ """
+ OSKAR sky model.
+ """
+ def __init__(self, image, freq, pixsize, ra0, dec0):
+ self.image = image # K (brightness temperature)
+ self.freq = freq # MHz
+ self.pixsize = pixsize # arcsec
+ self.ra0 = ra0 # deg
+ self.dec0 = dec0 # deg
+ logger.info("SkyModel: Loaded image @ %.2f [MHz]" % freq)
+
+ @property
+ def wcs(self):
+ """
+ WCS for the given image assuming the 'SIN' projection.
+ """
+ shape = self.image.shape
+ delta = self.pixsize / 3600.0 # deg
+ wcs_ = WCS(naxis=2)
+ wcs_.wcs.ctype = ["RA---SIN", "DEC--SIN"]
+ wcs_.wcs.crval = np.array([self.ra0, self.dec0])
+ wcs_.wcs.crpix = np.array([shape[1], shape[0]]) / 2.0 + 1
+ wcs_.wcs.cdelt = np.array([delta, delta])
+ return wcs_
+
+ @property
+ def fits_header(self):
+ header = self.wcs.to_header()
+ header["BUNIT"] = ("Jy/pixel", "Brightness unit")
+ header["FREQ"] = (self.freq, "Frequency [MHz]")
+ header["RA0"] = (self.ra0, "Center R.A. [deg]")
+ header["DEC0"] = (self.dec0, "Center Dec. [deg]")
+ return header
+
+ @property
+ def factor_K2JyPixel(self):
+ """
+ Conversion factor to convert brightness unit from 'K' to 'Jy/pixel'
+
+ http://www.iram.fr/IRAMFR/IS/IS2002/html_1/node187.html
+ """
+ pixarea = np.deg2rad(self.pixsize/3600.0) ** 2 # [sr]
+ kB = ac.k_B.si.value # Boltzmann constant [J/K]
+ c0 = ac.c.si.value # speed of light in vacuum [m/s]
+ freqHz = self.freq * 1e6 # [Hz]
+ factor = 2*kB * 1.0e26 * pixarea * (freqHz/c0)**2
+ return factor
+
+ @property
+ def ra_dec(self):
+ """
+ Calculate the (ra, dec) of each image pixel using the above WCS.
+
+ NOTE: axis ordering difference between numpy array and FITS
+ """
+ shape = self.image.shape
+ wcs = self.wcs
+ x, y = np.meshgrid(np.arange(shape[1]), np.arange(shape[0]))
+ pix = np.column_stack([x.flatten(), y.flatten()])
+ world = wcs.wcs_pix2world(pix, 0)
+ ra = world[:, 0].reshape(shape)
+ dec = world[:, 1].reshape(shape)
+ return (ra, dec)
+
+ @property
+ def sky(self):
+ """
+ OSKAR sky model array converted from the input image.
+
+ Columns
+ -------
+ ra : (J2000) right ascension (deg)
+ dec : (J2000) declination (deg)
+ flux : source (Stokes I) flux density (Jy)
+ """
+ ra, dec = self.ra_dec
+ ra = ra.flatten()
+ dec = dec.flatten()
+ flux = self.image.flatten() * self.factor_K2JyPixel
+ mask = flux > 1e-40
+ sky_ = np.column_stack([ra[mask], dec[mask], flux[mask]])
+ return sky_
+
+ def write_sky_model(self, outfile, clobber=False):
+ """
+ Write the converted sky model for simulation.
+ """
+ if os.path.exists(outfile) and (not clobber):
+ raise OSError("oskar sky model file already exists: " % outfile)
+ sky = self.sky
+ header=("Frequency = %.3f [MHz]\n" % self.freq +
+ "Pixel size = %.2f arcsec\n" % self.pixsize +
+ "RA0 = %.4f [deg]\n" % self.ra0 +
+ "Dec0 = %.4f [deg]\n" % self.dec0 +
+ "Number of sources = %d\n\n" % len(sky) +
+ "R.A.[deg] Dec.[deg] flux[Jy]")
+ np.savetxt(outfile, sky, fmt='%.10e, %.10e, %.10e', header=header)
+ logger.info("Wrote oskar sky model file: %s" % outfile)
+
+ def write_fits(self, outfile, oldheader=None, clobber=False):
+ if os.path.exists(outfile) and (not clobber):
+ raise OSError("Sky FITS already exists: " % outfile)
+ if oldheader is not None:
+ header = oldheader
+ header.extend(self.fits_header, update=True)
+ else:
+ header = self.fits_header
+ image = self.image * self.factor_K2JyPixel
+ hdu = fits.PrimaryHDU(data=image, header=header)
+ hdu.writeto(outfile, overwrite=True)
+ logger.info("Wrote sky FITS to file: %s" % outfile)
+
+
+class Oskar:
+ """
+ Run OSKAR simulations
+ """
+ def __init__(self, settings):
+ self.settings = settings
+
+ def run(self, settingsfile, dryrun=False):
+ cmd = [self.settings.oskar_bin]
+ if self.settings.quiet:
+ cmd += ["--quiet"]
+ cmd += [settingsfile]
+ logger.info("Running OSKAR simulator: CMD: %s" % " ".join(cmd))
+ if dryrun:
+ logger.info("Dry run!")
+ else:
+ subprocess.check_call(cmd)
+
+
+def main():
+ parser = argparse.ArgumentParser(
+ description="Run OSKAR to simulate visibilities")
+ parser.add_argument("config", help="Configuration file")
+ args = parser.parse_args()
+
+ settings = Settings(args.config)
+ clobber = settings.clobber
+ image_cube = SpectralCube(settings.input_cube)
+ frequencies = image_cube.frequencies # [MHz]
+ if frequencies is None:
+ frequencies = [settings.frequency]
+ logger.info("Number of image slices/frequencies: %d" % len(frequencies))
+
+ for nth, freq in enumerate(frequencies):
+ logger.info(">>> Processing #%d/%d image slice @ %.2f [MHz] <<<" %
+ (nth+1, len(frequencies), freq))
+ settingsfile = settings.output_settings_fn.format(freq=freq)
+ skymodelfile = settings.output_skymodel_fn.format(freq=freq)
+ skyfitsfile = settings.output_skyfits_fn.format(freq=freq)
+ msfile = settings.output_ms_fn.format(freq=freq)
+ visfile = settings.output_vis_fn.format(freq=freq)
+ for filepath in [settingsfile, skymodelfile, skyfitsfile,
+ msfile, visfile]:
+ dname = os.path.dirname(filepath)
+ if not os.path.isdir(dname):
+ os.makedirs(dname)
+
+ newconfig = configparser.ConfigParser()
+ newconfig.read_dict({
+ "sky": {
+ "oskar_sky_model/file": skymodelfile,
+ },
+ "observation": {
+ "start_frequency_hz": freq * 1e6,
+ },
+ "interferometer": {
+ "oskar_vis_filename": visfile,
+ "ms_filename": msfile,
+ },
+ })
+ settings.update_oskar_settings(newconfig)
+ settings.write_oskar_settings(outfile=settingsfile, clobber=clobber)
+
+ image_slice = image_cube.get_slice(nth)
+ skymodel = SkyModel(image=image_slice, freq=freq,
+ pixsize=settings.image_pixsize,
+ ra0=settings.ra0, dec0=settings.dec0)
+ skymodel.write_sky_model(skymodelfile, clobber=clobber)
+ skymodel.write_fits(skyfitsfile, oldheader=image_cube.header,
+ clobber=clobber)
+
+ oskar = Oskar(settings)
+ oskar.run(settingsfile, dryrun=settings.dryrun)
+
+
+if __name__ == '__main__':
+ main()
diff --git a/astro/oskar/vis2images.py b/astro/oskar/vis2images.py
new file mode 100755
index 0000000..40fe01b
--- /dev/null
+++ b/astro/oskar/vis2images.py
@@ -0,0 +1,176 @@
+#!/usr/bin/env python3
+#
+# Copyright (c) 2017 Weitian LI <liweitianux@live.com>
+# MIT license
+#
+# 2017-04-08
+#
+
+"""
+Make images from simulated visibilities using CASA 'clean' task.
+
+
+Credits
+-------
+[1] CASA: Common Astronomy Software Applications
+ https://casa.nrao.edu/
+[2] CASA: clean
+ https://casa.nrao.edu/docs/TaskRef/clean-task.html
+[2] GitHub: OxfordSKA/EoR - EoR_pipeline/make_images.py
+ https://github.com/OxfordSKA/EoR/blob/master/EoR_pipeline/make_images.py
+"""
+
+import os
+import sys
+import argparse
+import subprocess
+
+try:
+ from configparser import ConfigParser
+except ImportError:
+ # CASA (4.7) ships Python 2.7
+ from ConfigParser import ConfigParser
+
+
+class Settings:
+ """
+ Manage settings for imaging.
+ """
+ def __init__(self, infile):
+ self.infile = infile
+ # Python 2.7's ConfigParser doesn't have parameter 'interpolation'
+ config = ConfigParser()
+ config.read(infile)
+
+ DEFAULTS = {
+ "casa_bin": "casa",
+ "output_ms_fn": "visibility/visibility_{freq:.2f}.ms",
+ "output_image_rootname": "image/image_{freq:.2f}",
+ "clean_niter": '500', # int
+ "clean_gridmode": "widefield",
+ "clean_wprojplanes": '256', # int
+ "clean_weighting": "natural",
+ "clean_uvrange": "",
+ }
+
+ casa_bin = config.get("my", "casa_bin", vars=DEFAULTS)
+ self.casa_bin = os.path.expanduser(casa_bin)
+
+ # Width/X and height/Y of the input FITS image (unit: pixel)
+ size = config.get("my", "image_size").split(",")
+ self.image_width = int(size[0])
+ self.image_height = int(size[1])
+ self.image_size = (self.image_width, self.image_height)
+
+ # Pixel size of the input FITS image (unit: arcsec)
+ self.image_pixsize = config.getfloat("my", "image_pixsize")
+
+ # String format pattern for the output simulated visibility
+ # data in MeasurementSet format.
+ self.output_ms_fn = config.get("my", "output_ms_fn", vars=DEFAULTS)
+
+ # String format pattern for the output image rootname created
+ # from visibility using CASA 'clean' task.
+ self.output_image_rootname = config.get(
+ "my", "output_image_rootname", vars=DEFAULTS)
+
+ # Number of iteration over which to clean (i.e., deconvolve the
+ # dirty image)
+ # NOTE: Python 2.7's .getint() not support 'vars' parameter
+ self.clean_niter = int(config.get("my", "clean_niter", vars=DEFAULTS))
+
+ # Apply corrections for non-coplanar effects during imaging
+ # using the W-Projection algorithm
+ self.clean_gridmode = config.get("my", "clean_gridmode",
+ vars=DEFAULTS)
+
+ # Number of pre-computed w-planes used for the W-Projection
+ # algorithm
+ self.clean_wprojplanes = int(config.get("my", "clean_wprojplanes",
+ vars=DEFAULTS))
+
+ # Decides how much weight is given to uv grid points to allow
+ # for different sampling densities
+ self.clean_weighting = config.get("my", "clean_weighting",
+ vars=DEFAULTS)
+
+ # Range of baselines to include when generating the image
+ self.clean_uvrange = config.get("my", "clean_uvrange", vars=DEFAULTS)
+
+
+class Imager:
+ """
+ Imager using CASA 'clean' task to create image from visibility.
+ """
+ def __init__(self, ms, rootname):
+ self.ms = ms
+ self.rootname = rootname
+
+ def make_image(self, settings):
+ """
+ Make image from visibility using 'clean' task.
+ """
+ default(clean)
+ ret = clean(
+ vis=self.ms,
+ imagename=self.rootname,
+ niter=settings.clean_niter,
+ gridmode=settings.clean_gridmode,
+ wprojplanes=settings.clean_wprojplanes,
+ uvrange=settings.clean_uvrange,
+ weighting=settings.clean_weighting,
+ imsize=[settings.image_width, settings.image_height],
+ cell=[settings.image_pixsize, settings.image_pixsize]
+ )
+ return ret
+
+ def export_fits(self):
+ """
+ Export create image & psf into FITS.
+ """
+ for imgtype in ["image", "psf"]:
+ imgfile = "%s.%s" % (self.rootname, imgtype)
+ fitsfile = imgfile + ".fits"
+ exportfits(imagename=imgfile, fitsimage=fitsfile)
+
+
+def main_casa():
+ imgroot = sys.argv[-1]
+ msfile = sys.argv[-2]
+ configfile = sys.argv[-3]
+
+ settings = Settings(configfile)
+ imager = Imager(msfile, imgroot)
+ imager.make_image(settings)
+ imager.export_fits()
+
+
+def main():
+ parser = argparse.ArgumentParser(
+ description="Make images from visibilities using CASA")
+ parser.add_argument("config", help="Configuration file")
+ parser.add_argument("frequency", type=float,
+ help="frequency slice to imaging [MHz]")
+ args = parser.parse_args()
+ settings = Settings(args.config)
+
+ msfile = settings.output_ms_fn.format(freq=args.frequency)
+ imgroot = settings.output_image_rootname.format(freq=args.frequency)
+ dname = os.path.dirname(imgroot)
+ if not os.path.isdir(dname):
+ os.makedirs(dname)
+
+ cmd = [
+ settings.casa_bin, "--nogui", "--nologger", "--log2term",
+ "-c", __file__, args.config, msfile, imgroot
+ ]
+ print("CMD: %s" % " ".join(cmd))
+ subprocess.check_call(cmd)
+
+
+if __name__ == "__main__":
+ progname = os.path.basename(sys.argv[0])
+ if progname in ["casa", "casapy", "casapy.py"]:
+ main_casa()
+ else:
+ main()