aboutsummaryrefslogtreecommitdiffstats
path: root/astro
diff options
context:
space:
mode:
authorAaron LI <aly@aaronly.me>2017-10-28 15:51:19 +0800
committerAaron LI <aly@aaronly.me>2017-10-28 15:52:07 +0800
commit9aa50b115cd2650ff8cae9391a0b59560589dc89 (patch)
treef896b390f2ce62ecf1038148bbd7fb7795e150b3 /astro
parent8838f44c2e79a58dfc7752a7ddb0380fb387a948 (diff)
downloadatoolbox-9aa50b115cd2650ff8cae9391a0b59560589dc89.tar.bz2
calc_psd.py: Removed unnecessary AstroImage class
Diffstat (limited to 'astro')
-rwxr-xr-xastro/calc_psd.py216
1 files changed, 43 insertions, 173 deletions
diff --git a/astro/calc_psd.py b/astro/calc_psd.py
index 4661c62..730c6f0 100755
--- a/astro/calc_psd.py
+++ b/astro/calc_psd.py
@@ -82,7 +82,7 @@ class PSD:
print("DONE", flush=True)
return self.psd2d
- def calc_radial_psd1d(self):
+ def calc_psd(self):
"""
Computes the radially averaged power spectral density from the
provided 2D power spectral density.
@@ -216,161 +216,44 @@ class PSD:
return (fig, ax)
-class AstroImage:
+def open_image(infile):
"""
- Manipulate the astronimcal counts image, as well as the corresponding
- exposure map and background map.
+ Open the slice image and return its header and 2D image data.
+
+ NOTE
+ ----
+ The input slice image may have following dimensions:
+ * NAXIS=2: [Y, X]
+ * NAXIS=3: [FREQ=1, Y, X]
+ * NAXIS=4: [STOKES=1, FREQ=1, Y, X]
+
+ NOTE
+ ----
+ Only open slice image that has only ONE frequency and ONE Stokes
+ parameter.
+
+ Returns
+ -------
+ header : `~astropy.io.fits.Header`
+ image : 2D `~numpy.ndarray`
+ The 2D [Y, X] image part of the slice image.
"""
- # input counts image
- image = None
- # exposure map with respect to the input counts image
- expmap = None
- # background map (e.g., stowed background)
- bkgmap = None
- # exposure time of the input image
- exposure = None
- # exposure time of the background map
- exposure_bkg = None
-
- def __init__(self, image, expmap=None, bkgmap=None):
- self.load_image(image)
- self.load_expmap(expmap)
- self.load_bkgmap(bkgmap)
-
- @staticmethod
- def open_image(infile):
- """
- Open the slice image and return its header and 2D image data.
-
- NOTE
- ----
- The input slice image may have following dimensions:
- * NAXIS=2: [Y, X]
- * NAXIS=3: [FREQ=1, Y, X]
- * NAXIS=4: [STOKES=1, FREQ=1, Y, X]
-
- NOTE
- ----
- Only open slice image that has only ONE frequency and ONE Stokes
- parameter.
-
- Returns
- -------
- header : `~astropy.io.fits.Header`
- image : 2D `~numpy.ndarray`
- The 2D [Y, X] image part of the slice image.
- """
- with fits.open(infile) as f:
- header = f[0].header
- data = f[0].data
- if data.ndim == 2:
- # NAXIS=2: [Y, X]
- image = data
- elif data.ndim == 3 and data.shape[0] == 1:
- # NAXIS=3: [FREQ=1, Y, X]
- image = data[0, :, :]
- elif data.ndim == 4 and data.shape[0] == 1 and data.shape[1] == 1:
- # NAXIS=4: [STOKES=1, FREQ=1, Y, X]
- image = data[0, 0, :, :]
- else:
- raise ValueError("Slice '{0}' has invalid dimensions: {1}".format(
- infile, data.shape))
- return (header, image)
-
- def load_image(self, image):
- print("Loading image ... ", end="", flush=True)
- self.header, self.image = self.open_image(image)
- self.exposure = self.header.get("EXPOSURE")
- print("DONE", flush=True)
-
- def load_expmap(self, expmap):
- if expmap:
- print("Loading exposure map ... ", end="", flush=True)
- __, self.expmap = self.open_image(expmap)
- print("DONE", flush=True)
-
- def load_bkgmap(self, bkgmap):
- if bkgmap:
- print("Loading background map ... ", end="", flush=True)
- header, self.bkgmap = self.open_image(bkgmap)
- self.exposure_bkg = header.get("EXPOSURE")
- print("DONE", flush=True)
-
- def fix_shapes(self, tolerance=2):
- """
- Fix the shapes of self.expmap and self.bkgmap to make them have
- the same shape as the self.image.
-
- NOTE:
- * if the image is bigger than the reference image, then its
- columns on the right and rows on the botton are clipped;
- * if the image is smaller than the reference image, then padding
- columns on the right and rows on the botton are added.
- * Original images are REPLACED!
-
- Arguments:
- * tolerance: allow absolute difference between images
- """
- def _fix_shape(img, ref, tol=tolerance):
- if img.shape == ref.shape:
- print("SKIPPED", flush=True)
- return img
- elif np.allclose(img.shape, ref.shape, atol=tol):
- print(img.shape, "->", ref.shape, flush=True)
- rows, cols = img.shape
- rows_ref, cols_ref = ref.shape
- # rows
- if rows > rows_ref:
- img_fixed = img[:rows_ref, :]
- else:
- img_fixed = np.row_stack((img,
- np.zeros((rows_ref-rows, cols), dtype=img.dtype)))
- # columns
- if cols > cols_ref:
- img_fixed = img_fixed[:, :cols_ref]
- else:
- img_fixed = np.column_stack((img_fixed,
- np.zeros((rows_ref, cols_ref-cols), dtype=img.dtype)))
- return img_fixed
- else:
- raise ValueError("shape difference exceeds tolerance: " + \
- "(%d, %d) vs. (%d, %d)" % (img.shape + ref.shape))
- #
- if self.bkgmap is not None:
- print("Fixing shape for bkgmap ... ", end="", flush=True)
- self.bkgmap = _fix_shape(self.bkgmap, self.image)
- if self.expmap is not None:
- print("Fixing shape for expmap ... ", end="", flush=True)
- self.expmap = _fix_shape(self.expmap, self.image)
-
- def subtract_bkg(self):
- print("Subtracting background ... ", end="", flush=True)
- self.image -= (self.bkgmap / self.exposure_bkg * self.exposure)
- print("DONE", flush=True)
-
- def correct_exposure(self, cut=0.015):
- """
- Correct the image for exposure by dividing by the expmap to
- create the exposure-corrected image.
-
- Arguments:
- * cut: the threshold percentage with respect to the maximum
- exposure map value; and those pixels with lower values
- than this threshold will be excluded/clipped (set to ZERO)
- if set to None, then skip clipping image
- """
- print("Correcting image for exposure ... ", end="", flush=True)
- with np.errstate(divide="ignore", invalid="ignore"):
- self.image /= self.expmap
- # set invalid values to ZERO
- self.image[ ~ np.isfinite(self.image) ] = 0.0
- print("DONE", flush=True)
- if cut is not None:
- # clip image according the exposure threshold
- print("Clipping image (%s) ... " % cut, end="", flush=True)
- threshold = cut * np.max(self.expmap)
- self.image[ self.expmap < threshold ] = 0.0
- print("DONE", flush=True)
+ with fits.open(infile) as f:
+ header = f[0].header
+ data = f[0].data
+ if data.ndim == 2:
+ # NAXIS=2: [Y, X]
+ image = data
+ elif data.ndim == 3 and data.shape[0] == 1:
+ # NAXIS=3: [FREQ=1, Y, X]
+ image = data[0, :, :]
+ elif data.ndim == 4 and data.shape[0] == 1 and data.shape[1] == 1:
+ # NAXIS=4: [STOKES=1, FREQ=1, Y, X]
+ image = data[0, 0, :, :]
+ else:
+ raise ValueError("Slice '{0}' has invalid dimensions: {1}".format(
+ infile, data.shape))
+ return (header, image)
def main():
@@ -378,10 +261,6 @@ def main():
description="Calculate radially averaged power spectral density")
parser.add_argument("-C", "--clobber", dest="clobber", action="store_true",
help="overwrite the output files if already exist")
- parser.add_argument("-b", "--bkgmap", dest="bkgmap", default=None,
- help="background image (for background subtraction)")
- parser.add_argument("-e", "--expmap", dest="expmap", default=None,
- help="exposure map (for exposure correction)")
parser.add_argument("-i", "--infile", dest="infile", required=True,
help="input FITS image")
parser.add_argument("-o", "--outfile", dest="outfile", required=True,
@@ -400,24 +279,15 @@ def main():
if (not args.clobber) and os.path.exists(plotfile):
raise OSError("output plot file '%s' already exists" % plotfile)
- # Load image data
- image = AstroImage(image=args.infile,
- expmap=args.expmap,
- bkgmap=args.bkgmap)
- image.fix_shapes()
- if args.bkgmap:
- image.subtract_bkg()
- if args.expmap:
- image.correct_exposure()
-
- # Calculate the power spectral density
- psd = PSD(img=image.image, normalize=True)
+ header, image = open_image(args.infile)
+ psd = PSD(img=image, normalize=True)
psd.calc_psd2d()
- freqs, psd1d, psd1d_err = psd.calc_radial_psd1d()
+ freqs, psd, psd_err = psd.calc_psd()
# Write out PSD results
- psd_data = np.column_stack((freqs, psd1d, psd1d_err))
- np.savetxt(args.outfile, psd_data, header="freqs psd1d psd1d_err")
+ psd_data = np.column_stack((freqs, psd, psd_err))
+ np.savetxt(args.outfile, psd_data, header="freqs psd psd_err")
+ print("Saved PSD data to: %s" % args.outfile)
if args.plot:
# Make and save a plot