aboutsummaryrefslogtreecommitdiffstats
path: root/astro
diff options
context:
space:
mode:
authorAaron LI <aly@aaronly.me>2017-11-24 17:44:18 +0800
committerAaron LI <aly@aaronly.me>2017-11-24 17:44:18 +0800
commitb1a128c2d8fff0addd74d1a3a329ef3ff10d9b63 (patch)
treec63438b04c533e4d7117785864b13f687ee35576 /astro
parente0606e038299a2c9262bfc45085d454c5a473079 (diff)
downloadatoolbox-b1a128c2d8fff0addd74d1a3a329ef3ff10d9b63.tar.bz2
Add astro/msutils.py: finished the "info" command
Based on https://github.com/SpheMakh/msutils (GPLv2)
Diffstat (limited to 'astro')
-rwxr-xr-xastro/msutils.py352
1 files changed, 352 insertions, 0 deletions
diff --git a/astro/msutils.py b/astro/msutils.py
new file mode 100755
index 0000000..debbee7
--- /dev/null
+++ b/astro/msutils.py
@@ -0,0 +1,352 @@
+#!/usr/bin/env python3
+#
+# Copyright (c) 2016-2017 Sphesihle Makhathini
+# Copyright (c) 2017 Aaron LI
+# GNU General Public License v2.0 (GPLv2)
+#
+
+"""
+MSUtils - A set of CASA MeasurementSet manipulation tools
+Based on: https://github.com/SpheMakh/msutils
+"""
+
+import argparse
+from collections import OrderedDict
+from pprint import pprint
+
+import numpy as np
+from casacore import tables
+from casacore.tables import table, maketabdesc, makearrcoldesc
+
+
+def getinfo(msname):
+ """
+ Summarize the basic information of a MS.
+
+ Parameters
+ ----------
+ msname : str
+ Name of the MS
+ """
+ tab = tables.table(msname, ack=False)
+
+ info = OrderedDict([
+ ("Ncol", tab.ncols()),
+ ("Nrow", tab.nrows()),
+ ("Ncor", tab.getcell("DATA", 0).shape[-1]),
+ ("Info", tab.info()),
+ ("Keywords", tab.getkeywords().keys()),
+ ("Columns", tab.colnames()),
+ ("ColKeywords", OrderedDict([
+ (cname, tab.getcolkeywords(cname)) for cname in tab.colnames()
+ ])),
+ ("Exposure", tab.getcell("EXPOSURE", 0)),
+ ("FIELD", OrderedDict()),
+ ("SPW", OrderedDict()),
+ ("SCAN", OrderedDict()),
+ ])
+ tabs = {
+ "FIELD": tables.table(msname+"/FIELD", ack=False),
+ "SPW": tables.table(msname+"/SPECTRAL_WINDOW", ack=False),
+ }
+
+ field_ids = tabs["FIELD"].getcol("SOURCE_ID")
+ info["FIELD"]["STATE_ID"] = [None]*len(field_ids)
+ info["FIELD"]["PERIOD"] = [None]*len(field_ids)
+ for fid in field_ids:
+ ftab = tab.query("FIELD_ID=={0:d}".format(fid))
+ state_id = ftab.getcol("STATE_ID")[0]
+ info["FIELD"]["STATE_ID"][fid] = int(state_id)
+ scans = {}
+ total_length = 0
+ for scan in set(ftab.getcol("SCAN_NUMBER")):
+ stab = ftab.query("SCAN_NUMBER=={0:d}".format(scan))
+ length = (stab.getcol("TIME").max() - stab.getcol("TIME").min())
+ stab.close()
+ scans[str(scan)] = length
+ total_length += length
+
+ info["SCAN"][str(fid)] = scans
+ info["FIELD"]["PERIOD"][fid] = total_length
+ ftab.close()
+
+ for key, _tab in tabs.items():
+ if key == "SPW":
+ colnames = ["CHAN_FREQ", "MEAS_FREQ_REF",
+ "REF_FREQUENCY", "TOTAL_BANDWIDTH",
+ "NAME", "NUM_CHAN", "IF_CONV_CHAIN",
+ "NET_SIDEBAND", "FREQ_GROUP_NAME"]
+ else:
+ colnames = _tab.colnames()
+ for name in colnames:
+ try:
+ info[key][name] = _tab.getcol(name).tolist()
+ except AttributeError:
+ info[key][name] = _tab.getcol(name)
+ _tab.close()
+
+ # Get the minimum and maximum baselines
+ uv = tab.getcol("UVW")[:, :2]
+ baselines = np.sqrt(np.sum(uv**2, axis=1))
+ info["Baseline"] = {"min": baselines.min(), "max": baselines.max()}
+
+ tab.close()
+ return info
+
+
+def addcol(msname, colname=None, shape=None,
+ data_desc_type="array",
+ valuetype=None,
+ init_with=None,
+ coldesc=None,
+ coldmi=None,
+ clone="DATA",
+ rowchunk=None):
+ """
+ Add a column to MS
+
+ Parameters
+ ----------
+ msanme : str
+ MS to which to add the column
+ colname : str
+ Name of the column to be added
+ shape : shape
+ valuetype : data type
+ data_desc_type :
+ * ``scalar`` - scalar elements
+ * ``array`` - array elements
+ init_with : value to initialize the column with
+ """
+ tab = table(msname, readonly=False)
+
+ if colname in tab.colnames():
+ print("Column already exists")
+ return "exists"
+
+ print("Attempting to add %s column to %s" % (colname, msname))
+
+ valuetype = valuetype or "complex"
+
+ if coldesc:
+ data_desc = coldesc
+ shape = coldesc["shape"]
+ elif shape:
+ data_desc = maketabdesc(makearrcoldesc(colname,
+ init_with,
+ shape=shape,
+ valuetype=valuetype))
+ elif valuetype == "scalar":
+ data_desc = maketabdesc(makearrcoldesc(colname,
+ init_with,
+ valuetype=valuetype))
+ elif clone:
+ element = tab.getcell(clone, 0)
+ try:
+ shape = element.shape
+ data_desc = maketabdesc(makearrcoldesc(colname,
+ element.flatten()[0],
+ shape=shape,
+ valuetype=valuetype))
+ except AttributeError:
+ shape = []
+ data_desc = maketabdesc(makearrcoldesc(colname,
+ element,
+ valuetype=valuetype))
+
+ colinfo = [data_desc, coldmi] if coldmi else [data_desc]
+ tab.addcols(*colinfo)
+
+ print("Column added successfully.")
+
+ if init_with is None:
+ tab.close()
+ return "added"
+ else:
+ spwids = set(tab.getcol("DATA_DESC_ID"))
+ for spw in spwids:
+ print("Initializing column {0}. DDID is {1}".format(colname, spw))
+ tab_spw = tab.query("DATA_DESC_ID=={0:d}".format(spw))
+ nrows = tab_spw.nrows()
+
+ rowchunk = rowchunk or nrows/10
+ dshape = [0] + [a for a in shape]
+ for row0 in range(0, nrows, rowchunk):
+ nr = min(rowchunk, nrows-row0)
+ dshape[0] = nr
+ print("Wrtiting to column %s (rows %d to %d)" %
+ (colname, row0, row0+nr-1))
+ dtype = init_with.dtype
+ tab_spw.putcol(colname,
+ np.ones(dshape, dtype=dtype) * init_with,
+ row0, nr)
+ tab_spw.close()
+ tab.close()
+
+
+def sumcols(msname, col1=None, col2=None, outcol=None, cols=None,
+ subtract=False):
+ """
+ Add col1 to col2, or sum columns in "cols" list.
+
+ Parameters
+ ----------
+ subtract : bool
+ Subtract ``col2`` from ``col1``
+ """
+ tab = table(msname, readonly=False)
+ if outcol not in tab.colnames():
+ print("outcol {0:s} does not exist, will add it first.".format(outcol))
+ addcol(msname, outcol, clone=col1 or cols[0])
+
+ spws = set(tab.getcol("DATA_DESC_ID"))
+ for spw in spws:
+ tab_spw = tab.query("DATA_DESC_ID=={0:d}".format(spw))
+ nrows = tab_spw.nrows()
+ rowchunk = nrows//10 if nrows > 10000 else nrows
+ for row0 in range(0, nrows, rowchunk):
+ nr = min(rowchunk, nrows-row0)
+ print("Wrtiting to column %s (rows %d to %d)" %
+ (outcol, row0, row0+nr-1))
+ if subtract:
+ data = (tab_spw.getcol(col1, row0, nr) -
+ tab_spw.getcol(col2, row0, nr))
+ else:
+ cols = cols or [col1, col2]
+ data = 0
+ for col in cols:
+ data += tab.getcol(col, row0, nr)
+
+ tab_spw.putcol(outcol, data, row0, nr)
+ tab_spw.close()
+
+ tab.close()
+
+
+def copycol(msname, fromcol, tocol):
+ """
+ Copy data from one column to another
+ """
+
+ tab = table(msname, readonly=False)
+ if tocol not in tab.colnames():
+ addcol(msname, tocol, clone=fromcol)
+
+ spws = set(tab.getcol("DATA_DESC_ID"))
+ for spw in spws:
+ tab_spw = tab.query("DATA_DESC_ID=={0:d}".format(spw))
+ nrows = tab_spw.nrows()
+ rowchunk = nrows//10 if nrows > 5000 else nrows
+ for row0 in range(0, nrows, rowchunk):
+ nr = min(rowchunk, nrows-row0)
+ data = tab_spw.getcol(fromcol, row0, nr)
+ tab_spw.putcol(tocol, data, row0, nr)
+
+ tab_spw.close()
+ tab.close()
+
+
+def calc_vis_noise(msname, sefd, spw_id=0):
+ """
+ Calculate the nominal per-visibility noise
+ """
+ tab = table(msname)
+ spwtab = table(msname + "/SPECTRAL_WINDOW")
+
+ freq0 = spwtab.getcol("CHAN_FREQ")[spw_id, 0]
+ wavelength = 300e+6/freq0
+ bw = spwtab.getcol("CHAN_WIDTH")[spw_id, 0]
+ dt = tab.getcol("EXPOSURE", 0, 1)[0]
+ dtf = (tab.getcol("TIME", tab.nrows()-1, 1)-tab.getcol("TIME", 0, 1))[0]
+
+ tab.close()
+ spwtab.close()
+
+ print("%s: frequency %.2f MHz (lambda=%.2fm)" %
+ (msname, freq0/1e6, wavelength))
+ print("%s: bandwidth %.2g kHz, %.2fs integration, %.2fh synthesis" %
+ (bw*1e-3, dt, dtf/3600))
+ noise = sefd / np.sqrt(abs(2*bw*dt))
+ print("SEFD of %.2f Jy gives per-visibility noise of %.2f mJy" %
+ (sefd, noise*1000))
+
+ return noise
+
+
+def addnoise(msname, column="MODEL_DATA",
+ noise=0, sefd=551,
+ rowchunk=None,
+ addToCol=None,
+ spw_id=None):
+ """
+ Add Gaussian noise to MS, given a stdandard deviation (noise).
+ This noise can be also be calculated given SEFD value
+ """
+
+ tab = table(msname, readonly=False)
+
+ multi_chan_noise = False
+ if hasattr(noise, "__iter__"):
+ multi_chan_noise = True
+ elif hasattr(sefd, "__iter__"):
+ multi_chan_noise = True
+ else:
+ noise = noise or calc_vis_noise(msname, sefd=sefd,
+ spw_id=spw_id or 0)
+
+ spws = set(tab.getcol("DATA_DESC_ID"))
+ for spw in spws:
+ tab_spw = tab.query("DATA_DESC_ID=={0:d}".format(spw))
+ nrows = tab_spw.nrows()
+ nchan, ncor = tab_spw.getcell("DATA", 0).shape
+ rowchunk = rowchunk or nrows/10
+ for row0 in range(0, nrows, rowchunk):
+ nr = min(rowchunk, nrows-row0)
+ data = (np.random.randn(nr, nchan, ncor) +
+ 1j*np.random.randn(nr, nchan, ncor))
+ if multi_chan_noise:
+ noise = noise[np.newaxis, :, np.newaxis]
+ data *= noise
+
+ if addToCol:
+ data += tab_spw.getcol(addToCol, row0, nr)
+ print("%s + noise --> %s (rows %d to %d)" %
+ (addToCol, column, row0, row0+nr-1))
+ else:
+ print("Adding noise to column %s (rows %d to %d)" %
+ (column, row0, row0+nr-1))
+
+ tab_spw.putcol(column, data, row0, nr)
+ tab_spw.close()
+
+ tab.close()
+
+
+def cmd_info(args):
+ """
+ Sub-command: "info", show MS basic information
+ """
+ msname = args.msname
+ info = getinfo(msname)
+ pprint(info)
+
+
+def main():
+ parser = argparse.ArgumentParser(
+ description="CASA MeasurementSet (MS) manipulation utilities")
+
+ subparsers = parser.add_subparsers(dest="subparser_name",
+ title="sub-commands",
+ help="additional help")
+
+ # sub-command: "info"
+ parser_info = subparsers.add_parser("info", help="show MS basic info")
+ parser_info.add_argument("msname", help="MS name")
+ parser_info.set_defaults(func=cmd_info)
+
+ args = parser.parse_args()
+ args.func(args)
+
+
+if __name__ == "__main__":
+ main()