aboutsummaryrefslogtreecommitdiffstats
path: root/astro
diff options
context:
space:
mode:
authorAaron LI <aly@aaronly.me>2017-12-05 20:03:53 +0800
committerAaron LI <aly@aaronly.me>2017-12-05 20:03:53 +0800
commite7fb1d6cf6d39faf368379c73997cfff5ac227b3 (patch)
tree01f2c17e2fe695d6a6b7ab17cbbaabae1f0fd06f /astro
parent4074cef1ec4bf835c317a855ec7cddc6125bc6c7 (diff)
downloadatoolbox-e7fb1d6cf6d39faf368379c73997cfff5ac227b3.tar.bz2
astro/ps1d_eorwindow.py: add --step to support logarithmic grid averaging
Diffstat (limited to 'astro')
-rwxr-xr-xastro/calc_psd.py4
-rwxr-xr-xastro/ps1d_eorwindow.py84
2 files changed, 74 insertions, 14 deletions
diff --git a/astro/calc_psd.py b/astro/calc_psd.py
index 2d4f4fe..e2e3818 100755
--- a/astro/calc_psd.py
+++ b/astro/calc_psd.py
@@ -59,8 +59,8 @@ class PSD:
step : float, optional
By default, a logarithmic grid with the specified step ratio
(default: 1.1) will be used to do the azimuthal averages.
- If specified a value <=1 or None, then a evenly pixel-by-pixel
- (along radial direction) is adopted.
+ If specified a value <=1 or None, then an evenly pixel-by-pixel
+ (along radial direction) averaging scheme is adopted.
meanstd : bool, optional
By default, the median and 16% and 84% percentiles (i.e., 68% error)
will be calculated for each averaged annulus. If this option is
diff --git a/astro/ps1d_eorwindow.py b/astro/ps1d_eorwindow.py
index 7e03045..1b75d87 100755
--- a/astro/ps1d_eorwindow.py
+++ b/astro/ps1d_eorwindow.py
@@ -41,11 +41,27 @@ for k, v in [("font.family", "monospace"),
class PS1D:
"""
Calculate the 1D spherically averaged power spectrum from 2D PS.
+
+ Parameters
+ ----------
+ ps2d : `~PS2D`
+ A `~PS2D` instance
+ step : float, optional
+ By default, a logarithmic grid with the specified step ratio
+ (default: 1.1) will be used to do the azimuthal averages.
+ If specified a value <=1 or None, then an equal-width pixel-by-pixel
+ (along radial direction) grid is adopted.
"""
- def __init__(self, ps2d):
+ def __init__(self, ps2d, step=1.1):
self.ps2d = ps2d
self.data = ps2d.ps2d # shape: [n_k_los, n_k_perp]
self.data_err = ps2d.ps2d_err
+ self.eor_window = ps2d.eor_window()
+
+ if step is None or step <= 1:
+ self.step = None
+ else:
+ self.step = step
@property
def k_perp(self):
@@ -56,8 +72,40 @@ class PS1D:
return self.ps2d.k_los
@property
- def eor_window(self):
- return self.ps2d.eor_window()
+ def dk(self):
+ """
+ The wavenumber k bin size that will be used to determine the
+ averaging grid. Considering that the angular and line-of-sight
+ wavenumber bin sizes are very different, their geometric mean
+ is used instead.
+ """
+ k_perp = self.k_perp
+ k_los = self.k_los
+ dk_perp = k_perp[1] - k_perp[0]
+ dk_los = k_los[1] - k_los[0]
+ return np.sqrt(dk_perp * dk_los)
+
+ @property
+ def k(self):
+ """
+ The radial k positions to determine the averaging bins to derive
+ the 1D power spectrum.
+ """
+ k_max = np.sqrt(self.k_perp[-1]**2 + self.k_los[-1]**2)
+ dk = self.dk
+ nk = int(k_max / dk) + 1
+ x = np.arange(nk)
+ if self.step is None:
+ return x * dk
+ else:
+ xmax = x.max()
+ x2 = list(x[x*(self.step-1) <= 1])
+ v1 = x[len(x2)]
+ while v1 < xmax:
+ x2.append(v1)
+ v1 *= self.step
+ x2.append(xmax)
+ return np.array(x2) * dk
def calc_ps1d(self, normalize=True):
"""
@@ -68,8 +116,20 @@ class PS1D:
----------
normalize : bool
Whether to normalize the 1D power spectrum to obtain the
- dimensionless power spectrum, i.e.,
+ dimensionless one, i.e.,
Δ^2(k) = (k^3 / (2*π^2)) P(k)
+
+ Attributes
+ ----------
+ ps1d : 2D `~numpy.ndarray`
+ 3-column array storing the calculated 1D power spectrum,
+ ``[k, ps1d, ps1d_err]``
+ ps1d_normalized : bool
+ Whether the calculated 1D power spectrum is normalized?
+
+ Returns
+ -------
+ ps1d
"""
eor_window = self.eor_window
data = self.data.copy()
@@ -79,14 +139,9 @@ class PS1D:
k_perp = self.k_perp
k_los = self.k_los
- dk_perp = k_perp[1] - k_perp[0]
- dk_los = k_los[1] - k_los[0]
- dk = np.sqrt(dk_perp * dk_los)
- print("dk = %.6f [Mpc^-1]" % dk)
- k_max = np.sqrt(k_perp[-1]**2 + k_los[-1]**2)
- nk = int(k_max / dk) + 1
+ ps1d_k = self.k
+ nk = len(ps1d_k)
print("Number of k points: %d" % nk)
- ps1d_k = np.arange(nk) * dk
# PS1D's 3 columns: [k, ps1d, ps1d_err]
ps1d = np.zeros(shape=(nk, 3))
@@ -164,6 +219,11 @@ def main():
description="Calculate 1D power spectrum within the EoR window")
parser.add_argument("-C", "--clobber", dest="clobber", action="store_true",
help="overwrite the output files if already exist")
+ parser.add_argument("-s", "--step", dest="step", type=float, default=1.1,
+ help="step ratio (>1; default: 1.1) between 2 " +
+ "consecutive radial k bins, i.e., logarithmic grid. " +
+ "if specified a value <=1, then an equal-width grid " +
+ "of current k bin size will be used.")
parser.add_argument("-F", "--fov", dest="fov",
type=float, required=True,
help="instrumental FoV to determine the EoR window; " +
@@ -196,7 +256,7 @@ def main():
ps2d = PS2D(args.infile, fov=args.fov, e=args.conv_width,
k_perp_min=args.k_perp_min, k_perp_max=args.k_perp_max,
k_los_min=args.k_los_min, k_los_max=args.k_los_max)
- ps1d = PS1D(ps2d)
+ ps1d = PS1D(ps2d, step=args.step)
ps1d.calc_ps1d()
ps1d.save(args.outfile)