aboutsummaryrefslogtreecommitdiffstats
path: root/cluster
diff options
context:
space:
mode:
authorAaron LI <aly@aaronly.me>2017-10-16 10:59:31 +0800
committerAaron LI <aly@aaronly.me>2017-10-16 10:59:31 +0800
commit020c5df2758d299f72d4badc98f8255edfa61b3a (patch)
tree558ed7e4286ce88bab7f76f121987c3994a747ab /cluster
parent2a4f07ece389ab3454afeeeced8480a1c958f8f9 (diff)
downloadatoolbox-020c5df2758d299f72d4badc98f8255edfa61b3a.tar.bz2
Move some scripts
Diffstat (limited to 'cluster')
-rw-r--r--cluster/kMeans.py76
1 files changed, 0 insertions, 76 deletions
diff --git a/cluster/kMeans.py b/cluster/kMeans.py
deleted file mode 100644
index f4868c6..0000000
--- a/cluster/kMeans.py
+++ /dev/null
@@ -1,76 +0,0 @@
-#!/usr/bin/env python3
-# -*- coding: utf-8 -*-
-#
-# Credit: Machine Learning in Action: Chapter 10
-#
-# Aaron LI
-# 2015/06/23
-#
-
-"""
-k-means clustering algorithm
-"""
-
-
-import numpy as np
-
-
-def loadDataSet(fileName):
- dataMat = []
- fr = open(fileName)
- for line in fr.readlines():
- curLine = line.strip().split('\t')
- fltLine = list(map(float, curLine))
- dataMat.append(fltLine)
- return np.array(dataMat)
-
-
-def distEclud(vecA, vecB):
- return np.sqrt(np.sum(np.power(vecA - vecB, 2)))
-
-
-def randCent(dataSet, k):
- n = np.shape(dataSet)[1]
- centroids = np.zeros((k, n))
- for j in range(n):
- minJ = np.min(dataSet[:, j])
- rangeJ = float(np.max(dataSet[:, j]) - minJ)
- centroids[:, j] = minJ + rangeJ * np.random.rand(k)
- return centroids
-
-
-def kMeans(dataSet, k, distMeas=distEclud, createCent=randCent):
- m = np.shape(dataSet)[0]
- clusterAssment = np.zeros((m, 2))
- centroids = createCent(dataSet, k)
- clusterChanged = True
- iterations = 0
- while clusterChanged:
- clusterChanged = False
- iterations += 1
- for i in range(m):
- minDist = np.inf
- minIndex = -1
- # to find the nearest centroid
- for j in range(k):
- distJI = distMeas(centroids[j, :], dataSet[i, :])
- if distJI < minDist:
- minDist = distJI
- minIndex = j
- if clusterAssment[i, 0] != minIndex:
- clusterChanged = True
- clusterAssment[i, :] = minIndex, minDist**2
- #print(centroids)
- for cent in range(k):
- ptsInClust = dataSet[np.nonzero(clusterAssment[:, 0] == cent)]
- centroids[cent, :] = np.mean(ptsInClust, axis=0)
- result = {
- 'k': k,
- 'centroids': centroids,
- 'labels': clusterAssment[:, 0].astype(int),
- 'distance2': clusterAssment[:, 1],
- 'accessment': clusterAssment,
- 'iterations': iterations
- }
- return result
-