diff options
author | Aaron LI <aly@aaronly.me> | 2017-10-16 10:59:31 +0800 |
---|---|---|
committer | Aaron LI <aly@aaronly.me> | 2017-10-16 10:59:31 +0800 |
commit | 020c5df2758d299f72d4badc98f8255edfa61b3a (patch) | |
tree | 558ed7e4286ce88bab7f76f121987c3994a747ab /python | |
parent | 2a4f07ece389ab3454afeeeced8480a1c958f8f9 (diff) | |
download | atoolbox-020c5df2758d299f72d4badc98f8255edfa61b3a.tar.bz2 |
Move some scripts
Diffstat (limited to 'python')
-rw-r--r-- | python/force_field_transform.py | 126 | ||||
-rw-r--r-- | python/kMeans.py | 76 |
2 files changed, 202 insertions, 0 deletions
diff --git a/python/force_field_transform.py b/python/force_field_transform.py new file mode 100644 index 0000000..2b185c8 --- /dev/null +++ b/python/force_field_transform.py @@ -0,0 +1,126 @@ +# -*- coding: utf -*- +# +# Force field transform (Hurley et al., 2002, 2005) +# + +""" +Force field transform +""" + +import sys +import time +import numpy as np + + +def force(p1, p2): + """ + The force between two points of the image. + + Arguments: + p1, p2: (value, x, y) + + Return: + # (force, angle): value and direction of the force. + # angle: (-pi, pi], with respect to p1. + (f_x, f_y): x and y components of the force + """ + v1, x1, y1 = p1 + v2, x2, y2 = p2 + #force = v1*v2 / ((x1-x2)**2 + (y1-y2)**2) + #angle = np.atan2(y2-y1, x2-x1) + #return (force, angle) + f_x = v1 * v2 * (x2-x1) / ((x2-x1)**2 + (y2-y1)**2)**1.5 + f_y = v1 * v2 * (y2-y1) / ((x2-x1)**2 + (y2-y1)**2)**1.5 + return (f_x, f_y) + + +def force_array(p0, img): + """ + The forces between the input point with respect to the image. + + Arguments: + p0: (x, y), note (x, y) start with zero. + img: input image, a numpy array + + Return: + (f_x, f_y): x and y components of the forces of the same size + of the input image + """ + x0, y0 = p0 + v0 = img[y0, x0] + img[y0, x0] = 0.0 + x, y = np.meshgrid(range(img.shape[1]), range(img.shape[0])) + x[y0, x0] = -1 + y[y0, x0] = -1 + f_x = v0 * img * (x-x0) / ((x-x0)**2 + (y-y0)**2)**1.5 + f_y = v0 * img * (y-y0) / ((x-x0)**2 + (y-y0)**2)**1.5 + return (f_x, f_y) + + +def vector_add(v1, v2): + """ + Add two vectors and return the results. + + Arguments: + v1, v2: two input vectors of format (f_x, f_y) + + Return: + (F_x, F_y) + """ + f1_x, f1_y = v1 + f2_x, f2_y = v2 + return (f1_x+f2_x, f1_y+f2_y) + + +def force_summation(pixel, img): + """ + Calculate the resulting force of the specified pixel with respect to + the image. + + Argument: + pixel: the position (x, y) of the pixel to be calculated + img: the input image + + Return: + (F_x, F_y): x and y components of the resulting force. + """ + img = np.array(img) + x0, y0 = pixel + f_x, f_y = force_array((x0, y0), img) + return (f_x.sum(), f_y.sum()) + + +def force_field_transform(img): + """ + Perform the "force field transform" on the input image. + + Arguments: + img: input 2D image + + Return: + (amplitudes, angles) + amplitudes: the amplitudes of the resulting forces of each pixel + angles: the directions of the resulting forces of each pixel, + in unit radian. + """ + img = np.array(img) + amplitudes = np.zeros(img.shape) + angles = np.zeros(img.shape) + rows, cols = img.shape + t0 = time.time() + t_p = t0 + 30 # in 30 seconds + for y in range(rows): + for x in range(cols): + t1 = time.time() + if t1 >= t_p: + percent = 100 * (y*cols + x + 1) / (rows * cols) + print("progress: %.3f%%; %.1f min" % (percent, (t1-t0)/60.0), + file=sys.stderr) + t_p += 30 # in 30 seconds + f_x, f_y = force_array((x, y), img) + F_x, F_y = f_x.sum(), f_y.sum() + amplitudes[y, x] = np.sqrt(F_x**2 + F_y**2) + angles[y, x] = np.math.atan2(F_y, F_x) + return (amplitudes, angles) + + diff --git a/python/kMeans.py b/python/kMeans.py new file mode 100644 index 0000000..f4868c6 --- /dev/null +++ b/python/kMeans.py @@ -0,0 +1,76 @@ +#!/usr/bin/env python3 +# -*- coding: utf-8 -*- +# +# Credit: Machine Learning in Action: Chapter 10 +# +# Aaron LI +# 2015/06/23 +# + +""" +k-means clustering algorithm +""" + + +import numpy as np + + +def loadDataSet(fileName): + dataMat = [] + fr = open(fileName) + for line in fr.readlines(): + curLine = line.strip().split('\t') + fltLine = list(map(float, curLine)) + dataMat.append(fltLine) + return np.array(dataMat) + + +def distEclud(vecA, vecB): + return np.sqrt(np.sum(np.power(vecA - vecB, 2))) + + +def randCent(dataSet, k): + n = np.shape(dataSet)[1] + centroids = np.zeros((k, n)) + for j in range(n): + minJ = np.min(dataSet[:, j]) + rangeJ = float(np.max(dataSet[:, j]) - minJ) + centroids[:, j] = minJ + rangeJ * np.random.rand(k) + return centroids + + +def kMeans(dataSet, k, distMeas=distEclud, createCent=randCent): + m = np.shape(dataSet)[0] + clusterAssment = np.zeros((m, 2)) + centroids = createCent(dataSet, k) + clusterChanged = True + iterations = 0 + while clusterChanged: + clusterChanged = False + iterations += 1 + for i in range(m): + minDist = np.inf + minIndex = -1 + # to find the nearest centroid + for j in range(k): + distJI = distMeas(centroids[j, :], dataSet[i, :]) + if distJI < minDist: + minDist = distJI + minIndex = j + if clusterAssment[i, 0] != minIndex: + clusterChanged = True + clusterAssment[i, :] = minIndex, minDist**2 + #print(centroids) + for cent in range(k): + ptsInClust = dataSet[np.nonzero(clusterAssment[:, 0] == cent)] + centroids[cent, :] = np.mean(ptsInClust, axis=0) + result = { + 'k': k, + 'centroids': centroids, + 'labels': clusterAssment[:, 0].astype(int), + 'distance2': clusterAssment[:, 1], + 'accessment': clusterAssment, + 'iterations': iterations + } + return result + |