diff options
author | Aaron LI <aaronly.me@outlook.com> | 2016-04-28 19:08:50 +0800 |
---|---|---|
committer | Aaron LI <aaronly.me@outlook.com> | 2016-04-28 19:10:16 +0800 |
commit | c92a1ffb35cdb421d2a43137e972b02f79b5fb97 (patch) | |
tree | a2f571af9cab91d8e4dd1923d599ad9058595a8c /python | |
parent | 0635509e11684c29bbd74b7bd1153cd13bb26d8b (diff) | |
download | atoolbox-c92a1ffb35cdb421d2a43137e972b02f79b5fb97.tar.bz2 |
calc_radial_psd.py: split method "pad_squre()" from "calc_radial_psd()"
Diffstat (limited to 'python')
-rwxr-xr-x | python/calc_radial_psd.py | 87 |
1 files changed, 49 insertions, 38 deletions
diff --git a/python/calc_radial_psd.py b/python/calc_radial_psd.py index 2d26152..e31651d 100755 --- a/python/calc_radial_psd.py +++ b/python/calc_radial_psd.py @@ -13,6 +13,7 @@ # # Changelog: # 2016-04-28: +# * Split method "pad_square()" from "calc_radial_psd()" # * Hide numpy warning when dividing by zero # * Add method "AstroImage.fix_shapes()" # * Add support for background subtraction and exposure correction @@ -34,7 +35,7 @@ Compute the radially averaged power spectral density (i.e., power spectrum). """ -__version__ = "0.4.2" +__version__ = "0.4.3" __date__ = "2016-04-28" @@ -116,48 +117,16 @@ class PSD: if verbose: print("Calculating radial (1D) power spectral density ... ", end="", flush=True) - psd2d = self.psd2d.copy() - rows, cols = psd2d.shape - ## Adjust the PSD array size - dim_diff = np.abs(rows - cols) - dim_max = max(rows, cols) if verbose: print("padding ... ", end="", flush=True) - # Pad the 2D PSD array to be sqaure - if rows > cols: - # pad columns - if np.mod(dim_diff, 2) == 0: - cols_left = np.zeros((rows, dim_diff/2)) - cols_left[:] = np.nan - cols_right = np.zeros((rows, dim_diff/2)) - cols_right[:] = np.nan - psd2d = np.hstack((cols_left, psd2d, cols_right)) - else: - cols_left = np.zeros((rows, np.floor(dim_diff/2))) - cols_left[:] = np.nan - cols_right = np.zeros((rows, np.floor(dim_diff/2)+1)) - cols_right[:] = np.nan - psd2d = np.hstack((cols_left, psd2d, cols_right)) - elif rows < cols: - # pad rows - if np.mod(dim_diff, 2) == 0: - rows_top = np.zeros((dim_diff/2, cols)) - rows_top[:] = np.nan - rows_bottom = np.zeros((dim_diff/2, cols)) - rows_bottom[:] = np.nan - psd2d = np.vstack((rows_top, psd2d, rows_bottom)) - else: - rows_top = np.zeros((np.floor(dim_diff/2), cols)) - rows_top[:] = np.nan - rows_bottom = np.zeros((np.floor(dim_diff/2)+1, cols)) - rows_bottom[:] = np.nan - psd2d = np.vstack((rows_top, psd2d, rows_bottom)) + psd2d = self.pad_square(self.psd2d, value=np.nan) ## Compute radially average power spectrum - px = np.arange(-dim_max/2, dim_max/2) + dim = psd2d.shape[0] + px = np.arange(-dim/2, dim/2) x, y = np.meshgrid(px, px) rho, phi = self.cart2pol(x, y) rho = np.around(rho).astype(np.int) - dim_half = int(np.floor(dim_max/2) + 1) + dim_half = int(np.floor(dim/2) + 1) radial_psd = np.zeros(dim_half) radial_psd_err = np.zeros(dim_half) if verbose: @@ -171,7 +140,7 @@ class PSD: radial_psd[r] = np.nanmean(data) radial_psd_err[r] = np.nanstd(data) # Calculate frequencies - f = fftpack.fftfreq(dim_max, d=self.pixel[0]) + f = fftpack.fftfreq(dim, d=self.pixel[0]) freqs = np.abs(f[:dim_half]) # self.freqs = freqs @@ -199,6 +168,48 @@ class PSD: y = rho * np.sin(phi) return (x, y) + @staticmethod + def pad_square(data, value=np.nan): + """ + Symmetrically pad the supplied data matrix to make it square. + The padding rows are equally added to the top and bottom, + as well as the columns to the left and right sides. + The padded rows/columns are filled with the specified value. + """ + mat = data.copy() + rows, cols = mat.shape + dim_diff = abs(rows - cols) + dim_max = max(rows, cols) + if rows > cols: + # pad columns + if dim_diff // 2 == 0: + cols_left = np.zeros((rows, dim_diff/2)) + cols_left[:] = value + cols_right = np.zeros((rows, dim_diff/2)) + cols_right[:] = value + mat = np.hstack((cols_left, mat, cols_right)) + else: + cols_left = np.zeros((rows, np.floor(dim_diff/2))) + cols_left[:] = value + cols_right = np.zeros((rows, np.floor(dim_diff/2)+1)) + cols_right[:] = value + mat = np.hstack((cols_left, mat, cols_right)) + elif rows < cols: + # pad rows + if dim_diff // 2 == 0: + rows_top = np.zeros((dim_diff/2, cols)) + rows_top[:] = value + rows_bottom = np.zeros((dim_diff/2, cols)) + rows_bottom[:] = value + mat = np.vstack((rows_top, mat, rows_bottom)) + else: + rows_top = np.zeros((np.floor(dim_diff/2), cols)) + rows_top[:] = value + rows_bottom = np.zeros((np.floor(dim_diff/2)+1, cols)) + rows_bottom[:] = value + mat = np.vstack((rows_top, mat, rows_bottom)) + return mat + def plot(self, ax=None, fig=None): """ Make a plot of the radial (1D) PSD with matplotlib. |