diff options
author | Aaron LI <aaronly.me@gmail.com> | 2016-03-31 10:57:34 +0800 |
---|---|---|
committer | Aaron LI <aaronly.me@gmail.com> | 2016-03-31 10:57:34 +0800 |
commit | c9c896dea2ba43551c4e10bd49666105449e9bd7 (patch) | |
tree | e94b73f17b2d776c2acd4c9549657f500c3dc7ce /r/fitdistrplus-example.R | |
parent | 2b6cb9b655a53d43b32a8a211287c82f4f59999a (diff) | |
download | atoolbox-c9c896dea2ba43551c4e10bd49666105449e9bd7.tar.bz2 |
add all scripts/tools
Diffstat (limited to 'r/fitdistrplus-example.R')
-rw-r--r-- | r/fitdistrplus-example.R | 54 |
1 files changed, 54 insertions, 0 deletions
diff --git a/r/fitdistrplus-example.R b/r/fitdistrplus-example.R new file mode 100644 index 0000000..b5b1a57 --- /dev/null +++ b/r/fitdistrplus-example.R @@ -0,0 +1,54 @@ +n <- 50 +m <- 50 +set.seed(1) +mu <- -0.4 +sig <- 0.12 +x <- matrix(data=rlnorm(n*m, mu, sig), nrow=m) + +library(fitdistrplus) +## Fit a log-normal distribution to the 50 random data set +f <- apply(x, 2, fitdist, "lnorm") + +## Plot the results +for(i in 1:n) +plot(f[[i]]) + +## Save plot in an animated GIF-file +library(animation) +saveGIF({for(i in 1:n) plot(f[[i]])}) + +apply((sapply(f, "[[", "estimate")),1, summary) +# meanlog sdlog +# Min. -0.4347 0.09876 +# 1st Qu. -0.4140 0.11480 +# Median -0.4010 0.12110 +# Mean -0.4011 0.12270 +# 3rd Qu. -0.3899 0.12950 +# Max. -0.3522 0.14780 + + +## How much variance can we expect in the mean and std? +## Expeted mean +ExpectedMean <- function(mu, sig) exp(mu+ sig^2/2) +## Expected std +ExpectedStd <- function(mu, sig) sqrt((exp(sig^2)-1)*exp(2*mu + sig^2)) + +summary(apply(sapply(f, "[[", "estimate"), 2, function(x) ExpectedMean(x[1], x[2]))) +# Min. 1st Qu. Median Mean 3rd Qu. Max. +# 0.6529 0.6665 0.6747 0.6748 0.6819 0.7087 +summary(apply(sapply(f, "[[", "estimate"), 2, function(x) ExpectedStd(x[1], x[2]))) +# Min. 1st Qu. Median Mean 3rd Qu. Max. +# 0.06604 0.07880 0.08212 0.08316 0.08794 0.10170 + +## Let's look at the goodness of fit statistics to get an +## idea how much variance we can expect there: +gof.ln <- lapply(f, gofstat) +gof.test <- lapply(gof.ln, function(x) data.frame(x[c("chisqpvalue", "cvm", "ad", "ks")])) +apply(do.call("rbind", gof.test), 2, summary) +# chisqpvalue cvm ad ks +# Min. 0.0002673 0.02117 0.1537 0.05438 +# 1st Qu. 0.1394000 0.03755 0.2708 0.07488 +# Median 0.3578000 0.04841 0.3216 0.08054 +# Mean 0.3814000 0.05489 0.3564 0.08431 +# 3rd Qu. 0.6409000 0.06913 0.4358 0.09436 +# Max. 0.9245000 0.13220 0.7395 0.12570
\ No newline at end of file |