aboutsummaryrefslogtreecommitdiffstats
path: root/rand
diff options
context:
space:
mode:
authorAaron LI <aaronly.me@gmail.com>2016-03-31 10:57:34 +0800
committerAaron LI <aaronly.me@gmail.com>2016-03-31 10:57:34 +0800
commitc9c896dea2ba43551c4e10bd49666105449e9bd7 (patch)
treee94b73f17b2d776c2acd4c9549657f500c3dc7ce /rand
parent2b6cb9b655a53d43b32a8a211287c82f4f59999a (diff)
downloadatoolbox-c9c896dea2ba43551c4e10bd49666105449e9bd7.tar.bz2
add all scripts/tools
Diffstat (limited to 'rand')
-rw-r--r--rand/luminosity_func.py96
-rw-r--r--rand/pointsrc_coord.py98
-rw-r--r--rand/sphere.py57
3 files changed, 251 insertions, 0 deletions
diff --git a/rand/luminosity_func.py b/rand/luminosity_func.py
new file mode 100644
index 0000000..8cc46ee
--- /dev/null
+++ b/rand/luminosity_func.py
@@ -0,0 +1,96 @@
+#!/usr/bin/python3
+# -*- coding: utf-8 -*-
+#
+# Aaron LI
+# 2015/07/01
+#
+
+"""
+Generate random numbers (i.e., fluxes) with respect to the
+provided luminosity function.
+"""
+
+import numpy as np
+import random
+
+def luminosity_func(Lx, N0=1.0):
+ """
+ The *cumulative* luminosity function: N(>=L)
+ The number of objects with luminosities >= L(x) for each L(x).
+ """
+ # broken power-law model (Xu et al. 2005)
+ # Nx = (1) N0 * (Lx/L_b)^(-alpha_l); for Lx <= L_b
+ # (2) N0 * (Lx/L_b)^(-alpha_h); for Lx > L_b
+ L_b = 4.4e38 # break point (erg/s) (+2.0/-1.4)
+ alpha_h = 2.28 # (+1.72/-0.53)
+ alpha_l = 1.08 # (+0.15/-0.33)
+ if isinstance(Lx, np.ndarray):
+ Nx = np.zeros(Lx.shape)
+ Nx[Lx <= 0] = 0.0
+ Nx[Lx <= L_b] = N0 * (Lx[Lx <= L_b] / L_b)**(-alpha_l)
+ Nx[Lx > L_b] = N0 * (Lx[Lx > L_b] / L_b)**(-alpha_h)
+ else:
+ # Lx is a single number
+ if Lx <= 0.0:
+ Nx = 0.0
+ elif Lx <= L_b:
+ Nx = N0 * (Lx/L_b)**(-alpha_l)
+ else:
+ Nx = N0 * (Lx/L_b)**(-alpha_h)
+ return Nx
+
+
+def luminosity_density(Lx, N0=1.0):
+ """
+ Function of number density at luminosity at Lx. => PDF
+
+ PDF(Lx) = - d(luminosity_func(Lx) / d(Lx)
+ """
+ L_b = 4.4e38 # break point (erg/s) (+2.0/-1.4)
+ alpha_h = 2.28 # (+1.72/-0.53)
+ alpha_l = 1.08 # (+0.15/-0.33)
+ if isinstance(Lx, np.ndarray):
+ Px = np.zeros(Lx.shape)
+ Px[Lx<=0] = 0.0
+ Px[Lx<=L_b] = N0 * (alpha_l/L_b) * (Lx[Lx<=L_b] / L_b)**(-alpha_l-1)
+ Px[Lx>L_b] = N0 * (alpha_h/L_b) * (Lx[Lx>L_b] / L_b)**(-alpha_h-1)
+ else:
+ # Lx is a single number
+ if Lx <= 0.0:
+ Px = 0.0
+ elif Lx <= L_b:
+ Px = N0 * (alpha_l/L_b) * (Lx/L_b)**(-alpha_l-1)
+ else:
+ Px = N0 * (alpha_h/L_b) * (Lx/L_b)**(-alpha_h-1)
+ return Px
+
+
+def luminosity_pdf(Lx):
+ """
+ Probability density function
+ """
+ h = 1e-5 * Lx # step size for numerical deviation
+ p = - (luminosity_func(Lx+0.5*h) - luminosity_func(Lx-0.5*h)) / h
+ return p
+
+
+def sampler(min, max, number=1):
+ """
+ Generate a sample of luminosity values within [min, max] from
+ the above luminosity distribution.
+ """
+ # Get the maximum value of the density function
+ M = luminosity_density(min)
+ results = []
+ for i in range(number):
+ while True:
+ u = random.random() * M
+ y = random.random() * (max-min) + min
+ if u <= luminosity_density(y):
+ results.append(y)
+ break
+ if len(results) == 1:
+ return results[0]
+ else:
+ return np.array(results)
+
diff --git a/rand/pointsrc_coord.py b/rand/pointsrc_coord.py
new file mode 100644
index 0000000..1da9be2
--- /dev/null
+++ b/rand/pointsrc_coord.py
@@ -0,0 +1,98 @@
+# -*- coding: utf-8 -*-
+#
+# Aaron LI
+# 2015/07/01
+#
+
+"""
+Generate random coordinates for point sources with respect to the r^{1/4}
+distribution.
+"""
+
+import numpy as np
+import random
+
+
+def cdf(r, N0=1.0):
+ """
+ Cumulative distribution function of the number of point sources.
+
+ r^{1/4} distribution law: de Vaucouleurs 1948
+ """
+ return N0 * r**(1.0/4.0)
+
+
+def pdf(r, N0=1.0):
+ """
+ Density function of the number of point sources.
+
+ pdf = d(pdf) / d(r)
+ """
+ if isinstance(r, np.ndarray):
+ p = np.zeros(r.shape)
+ p[r<=0.0] = 0.0
+ p[r>0.0] = 0.25 * N0 * r[r>0.0]**(-3.0/4.0)
+ else:
+ if r <= 0.0:
+ p = 0.0
+ else:
+ p = 0.25 * N0 * r**(-3.0/4.0)
+ return p
+
+
+def sampler(min, max, number=1):
+ """
+ Generate a sample of coordinates (only r) within [min, max] from
+ the above density distribution.
+
+ min, max: the minimum and maximum r values (in degree)
+ """
+ # Get the maximum value of the density function
+ M = pdf(min)
+ results = []
+ for i in range(number):
+ while True:
+ u = random.random() * M
+ y = random.random() * (max-min) + min
+ if u <= pdf(y):
+ results.append(y)
+ break
+ if len(results) == 1:
+ return results[0]
+ else:
+ return np.array(results)
+
+
+def add_angle(r):
+ """
+ Add angle for each r value to make up a coordinate of a polar coordinate.
+ """
+ coords = []
+ for ri in r:
+ theta = random.random() * 360
+ coords.append((ri, theta))
+ if len(coords) == 1:
+ return coords[0]
+ else:
+ return coords
+
+
+def to_radec(coords, xc=0, yc=0):
+ """
+ Convert the generated coordinates to (ra, dec) (unit: degree).
+
+ xc, yc: the center coordinate (ra, dec)
+ """
+ results = []
+ for r, theta in coords:
+ # FIXME: spherical algebra should be used!!!
+ dx = r * np.cos(theta*np.pi/180)
+ dy = r * np.sin(theta*np.pi/180)
+ x = xc + dx
+ y = yc + dy
+ results.append((x, y))
+ if len(results) == 1:
+ return results[0]
+ else:
+ return results
+
diff --git a/rand/sphere.py b/rand/sphere.py
new file mode 100644
index 0000000..4220766
--- /dev/null
+++ b/rand/sphere.py
@@ -0,0 +1,57 @@
+#!/usr/bin/env python3
+# -*- coding: utf-8 -*-
+#
+# Randomly pick point on the sphere surface.
+#
+# References:
+# [1] Shpere Poin Picking -- from Wolfram MathWorld
+# http://mathworld.wolfram.com/SpherePointPicking.html
+# [2] Random Points on a Sphere
+# https://www.jasondavies.com/maps/random-points/
+#
+# Aaron LI
+# 2015/06/18
+
+__version__ = "0.1.0"
+__date__ = "2015/06/16"
+
+import math
+import random
+
+def sphere_point(n=1, unit="rad"):
+ """
+ Randomly uniformly pick a point on the sphere surface.
+ Using the method "Sphere Point Picking" from Wolfram MathWorld.
+
+ Arguments:
+ n: number of points to be generated
+ unit: unit of output values: rad/deg
+
+ Return:
+ (theta, phi): spherical coordinate (unit: rad).
+ theta: [0, 2\pi); phi: [0 - \pi]
+ If n > 1, then return a list of (theta, phi)
+ """
+ points = []
+ for i in range(n):
+ u = random.random()
+ v = random.random()
+ theta = 2.0 * math.pi * u
+ phi = math.acos(2.0*v - 1.0)
+ if unit == "deg":
+ theta = rad2deg(theta)
+ phi = rad2deg(phi)
+ points.append((theta, phi))
+ if n == 1:
+ return points[0]
+ else:
+ return points
+
+
+def rad2deg(x):
+ return x * 180.0 / math.pi
+
+def deg2rad(x):
+ return x * math.pi / 180.0
+
+