aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rwxr-xr-xpython/correct_crosstalk.py340
1 files changed, 299 insertions, 41 deletions
diff --git a/python/correct_crosstalk.py b/python/correct_crosstalk.py
index 4c7f820..9f86763 100755
--- a/python/correct_crosstalk.py
+++ b/python/correct_crosstalk.py
@@ -1,40 +1,66 @@
#!/usr/bin/env python3
-#
-# Correct the crosstalk effect of XMM spectra by subtracting the
-# scattered photons from surrounding regions, and by compensating
-# the photons scattered to surrounding regions, according to the
-# generated crosstalk ARFs.
-#
-# Sample config file (in `ConfigObj' syntax):
-#----------------------
-# fix_negative = True
-# verbose = True
-# clobber = False
-#
-# [reg2]
-# outfile = cc_reg2.pi
-# spec = reg2.pi
-# arf = reg2.arf
-# [[cross_in]]
-# [[[in1]]]
-# spec = reg1.pi
-# arf = reg1.arf
-# cross_arf = reg_1-2.arf
-# [[[in2]]]
-# spec = reg3.pi
-# arf = reg3.arf
-# cross_arf = reg_3-2.arf
-# [[cross_out]]
-# cross_arf = reg_2-1.arf, reg_2-3.arf
-#----------------------
+# -*- coding: utf-8 -*-
#
# Weitian LI
# Created: 2016-03-26
-# Updated: 2016-03-28
+# Updated: 2016-04-01
+#
+# ChangeLog:
+# 2016-04-01:
+# * Greatly update the documentations (e.g., description, sample config)
+# * Add class `RMF'
+# * Add method `get_energy()' for class `ARF'
+#
+# TODO/XXX:
+# * Add background spectrum fields
+# * Subtract background spectrum before correcting crosstalk effects
+# * Estimate channel errors by Monte Carlo simulations
+# * Split classes ARF, RMF, Spectrum to a separate module
#
-from astropy.io import fits
+
+"""
+Correct the crosstalk effect of XMM spectra by subtracting the photons that
+scattered from the surrounding regions due to the finite PSF, and by
+compensating the photons that scattered to the surrounding regions, according
+to the generated crosstalk ARFs by SAS `arfgen'.
+
+
+Sample config file (in `ConfigObj' syntax):
+-----------------------------------------------------------
+verbose = True
+clobber = False
+# whether to fix the negative channel values due to spectral subtractions
+fix_negative = True
+
+[...]
+...
+
+[reg2]
+outfile = cc_reg2.pi
+spec = reg2.pi
+arf = reg2.arf
+ [[cross_in]]
+ [[[in1]]]
+ spec = reg1.pi
+ arf = reg1.arf
+ cross_arf = reg_1-2.arf
+ [[[in2]]]
+ spec = reg3.pi
+ arf = reg3.arf
+ cross_arf = reg_3-2.arf
+ [[cross_out]]
+ cross_arf = reg_2-1.arf, reg_2-3.arf
+
+[...]
+...
+-----------------------------------------------------------
+"""
+
+
import numpy as np
+import scipy as sp
+from astropy.io import fits
from configobj import ConfigObj
import sys
@@ -43,22 +69,45 @@ import argparse
from datetime import datetime
-class ARF:
+class ARF: # {{{
"""
- Deal with X-ray ARF file (.arf)
+ Class to handle the ARF (ancillary/auxiliary response file),
+ which contains the combined instrumental effective area
+ (telescope/filter/detector) and the quantum efficiency (QE) as a
+ function of energy averaged over time.
+ The effective area is [cm^2], and the QE is [counts/photon]; they are
+ multiplied together to create the ARF, resulting in [cm^2 counts/photon].
+
+ **CAVEAT/NOTE**:
+ For the XMM EPIC *pn* and Chandra *ACIS*, the generated ARF does NOT have
+ the same number of data points to that of spectral channels, i.e., the
+ "ENERG_LO" and "ENERG_HI" columns of ARF is different to the "E_MIN" and
+ "E_MAX" columns of RMF.
+ Therefore it is necessary to interpolate and extrapolate the ARF curve
+ in order to match the spectrum (or RMF "EBOUNDS" extension).
+ As for the XMM EPIC *MOS1* and *MOS2*, the ARF data points match the
+ spectral channels, i.e., the energy positions of each ARF data point and
+ spectral channel are consistent. Thus the interpolation is not needed.
+
+ References:
+ [1] CIAO: Auxiliary Response File
+ http://cxc.harvard.edu/ciao/dictionary/arf.html
+ [2] Definition of RMF and ARF file formats
+ https://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/docs/memos/cal_gen_92_002/cal_gen_92_002.html
"""
filename = None
- fitsobj = None
- header = None
+ fitsobj = None
+ # only consider the "SPECTRUM" extension
+ header = None
energ_lo = None
energ_hi = None
specresp = None
def __init__(self, filename):
self.filename = filename
- self.fitsobj = fits.open(filename)
- ext_specresp = self.fitsobj["SPECRESP"]
- self.header = ext_specresp.header
+ self.fitsobj = fits.open(filename)
+ ext_specresp = self.fitsobj["SPECRESP"]
+ self.header = ext_specresp.header
self.energ_lo = ext_specresp.data["ENERG_LO"]
self.energ_hi = ext_specresp.data["ENERG_HI"]
self.specresp = ext_specresp.data["SPECRESP"]
@@ -69,27 +118,202 @@ class ARF:
else:
return self.specresp
+ def get_energy(self, mean="geometric"):
+ """
+ Return the mean energy values of the ARF.
-class Spectrum:
+ Arguments:
+ * mean: type of the mean energy:
+ + "geometric": geometric mean, i.e., e = sqrt(e_min*e_max)
+ + "arithmetic": arithmetic mean, i.e., e = 0.5*(e_min+e_max)
+ """
+ if mean == "geometric":
+ energy = np.sqrt(self.energ_lo * self.energ_hi)
+ elif mean == "arithmetic":
+ energy = 0.5 * (self.energ_lo + self.energ_hi)
+ else:
+ raise ValueError("Invalid mean type: %s" % mean)
+ return energy
+
+ def interpolate(self, x=None, verbose=False):
+ """
+ Cubic interpolate the ARF curve using `scipy.interpolate'
+
+ If the requested point is outside of the data range, the
+ fill value of *zero* is returned.
+
+ Arguments:
+ * x: points at which the interpolation to be calculated.
+
+ Return:
+ If x is None, then the interpolated function is returned,
+ otherwise, the interpolated data are returned.
+ """
+ energy = self.get_energy()
+ arf = self.get_data(copy=False)
+ if verbose:
+ print("INFO: ARF interpolating (this may take a while) ...",
+ file=sys.stderr)
+ f_interp = sp.interpolate.interp1d(energy, arf, kind="cubic",
+ bounds_error=False, fill_value=0.0, assume_sorted=True)
+ if x is not None:
+ return f_interp(x)
+ else:
+ return f_interp
+# class ARF }}}
+
+
+class RMF: # {{{
+ """
+ Class to handle the RMF (redistribution matrix file),
+ which maps from energy space into detector pulse height (or position)
+ space. Since detectors are not perfect, this involves a spreading of
+ the observed counts by the detector resolution, which is expressed as
+ a matrix multiplication.
+ For X-ray spectral analysis, the RMF encodes the probability R(E,p)
+ that a detected photon of energy E will be assisgned to a given
+ channel value (PHA or PI) of p.
+
+ The standard Legacy format [2] for the RMF uses a binary table in which
+ each row contains R(E,p) for a single value of E as a function of p.
+ Non-zero sequences of elements of R(E,p) are encoded using a set of
+ variable length array columns. This format is compact but hard to
+ manipulate and understand.
+
+ **CAVEAT/NOTE**:
+ + See the above ARF CAVEAT/NOTE for the XMM EPIC pn.
+ + This class (currently) only deals with the "EBOUNDS" extension, which
+ contains the `CHANNEL', `E_MIN' and `E_MAX' columns. This `CHANNEL'
+ is the same as that of a spectrum. Therefore, the energy values can
+ be used to interpolate and extrapolate the ARF curve.
+ + The `ENERG_LO' and `ENERG_HI' columns of "MATRIX" extension are the
+ same as that of a ARF.
+
+ References:
+ [1] CIAO: Redistribution Matrix File
+ http://cxc.harvard.edu/ciao/dictionary/rmf.html
+ [2] Definition of RMF and ARF file formats
+ https://heasarc.gsfc.nasa.gov/docs/heasarc/caldb/docs/memos/cal_gen_92_002/cal_gen_92_002.html
+ """
+ filename = None
+ fitsobj = None
+ ## extension "MATRIX"
+ hdr_matrix = None
+ energ_lo = None
+ energ_hi = None
+ n_grp = None
+ f_chan = None
+ n_chan = None
+ # raw squeezed RMF matrix data
+ matrix = None
+ ## extension "EBOUNDS"
+ hdr_ebounds = None
+ channel = None
+ e_min = None
+ e_max = None
+ ## converted 2D RMF matrix/image from the squeezed binary table
+ # size: len(energ_lo) x len(channel)
+ rmfimg = None
+
+ def __init__(self, filename):
+ self.filename = filename
+ self.fitsobj = fits.open(filename)
+ ## "MATRIX" extension
+ ext_matrix = self.fitsobj["MATRIX"]
+ self.hdr_matrix = ext_matrix.header
+ self.energ_lo = ext_matrix.data["ENERG_LO"]
+ self.energ_hi = ext_matrix.data["ENERG_HI"]
+ self.n_grp = ext_matrix.data["N_GRP"]
+ self.f_chan = ext_matrix.data["F_CHAN"]
+ self.n_chan = ext_matrix.data["N_CHAN"]
+ self.matrix = ext_matrix.data["MATRIX"]
+ ## "EBOUNDS" extension
+ ext_ebounds = self.fitsobj["EBOUNDS"]
+ self.hdr_ebounds = ext_ebounds.header
+ self.channel = ext_ebounds.data["CHANNEL"]
+ self.e_min = ext_ebounds.data["E_MIN"]
+ self.e_max = ext_ebounds.data["E_MAX"]
+
+ def get_energy(self, mean="geometric"):
+ """
+ Return the mean energy values of the RMF "EBOUNDS".
+
+ Arguments:
+ * mean: type of the mean energy:
+ + "geometric": geometric mean, i.e., e = sqrt(e_min*e_max)
+ + "arithmetic": arithmetic mean, i.e., e = 0.5*(e_min+e_max)
+ """
+ if mean == "geometric":
+ energy = np.sqrt(self.e_min * self.e_max)
+ elif mean == "arithmetic":
+ energy = 0.5 * (self.e_min + self.e_max)
+ else:
+ raise ValueError("Invalid mean type: %s" % mean)
+ return energy
+
+ def get_rmfimg(self):
+ """
+ Convert the RMF data in squeezed binary table (standard Legacy format)
+ to a 2D image/matrix.
+ """
+ def _make_rmfimg_row(n_channel, dtype, f_chan, n_chan, mat_row):
+ f_chan -= 1 # FITS indices are 1-based
+ idx = np.concatenate([ np.arange(f, f+n) \
+ for f, n in zip(f_chan, n_chan) ])
+ rmfrow = np.zeros(n_channel, dtype=dtype)
+ rmfrow[idx] = mat_row
+ return rmfrow
+ #
+ if self.rmfimg is None:
+ # Make the 2D RMF matrix/image
+ n_energy = len(self.energ_lo)
+ n_channel = len(self.channel)
+ rmf_dtype = self.matrix[0].dtype
+ rmfimg = np.zeros(shape=(n_energy, n_channel), dtype=rmf_dtype)
+ for i in range(n_energy):
+ rmfimg[i, :] = _make_rmfimg_row(n_channel, rmf_dtype,
+ self.f_chan[i], self.n_chan[i], self.matrix[i])
+ self.rmfimg = rmfimg
+ return self.rmfimg
+
+ def write_rmfimg(self, outfile, clobber=False):
+ rmfimg = self.get_rmfimg()
+ # merge headers
+ header = self.hdr_matrix.copy(strip=True)
+ header.extend(self.hdr_ebounds.copy(strip=True))
+ outfits = fits.PrimaryHDU(data=rmfimg, header=header)
+ outfits.writeto(outfile, checksum=True, clobber=clobber)
+# class RMF }}}
+
+
+class Spectrum: # {{{
"""
Deal with X-ray spectrum (.pi)
+ TODO/XXX:
+ * Add background spectrum fields
+ * Subtract background spectrum before correcting crosstalk effects
+ * Strip keywords ANCRFILE, RESPFILE, BACKFILE from the output spectrum
+ * Estimate channel errors by Monte Carlo simulations
+
NOTE:
The "COUNTS" column data are converted from "int32" to "float32".
"""
filename = None
- # FITS object return by `fits.open'
+ # FITS object return by `fits.open()'
fitsobj = None
# header of "SPECTRUM" extension
header = None
# "SPECTRUM" extension data
channel = None
- # name of the column containing the spectrum data, either "COUNTS" or "RATE"
+ # name of the column containing the spectrum data ("COUNTS" or "RATE")
spec_colname = None
# spectrum data
spec_data = None
# ARF object for this spectrum
arf = None
+ # RMF object for this spectrum
+ rmf = None
def __init__(self, filename, arffile):
self.filename = filename
@@ -114,7 +338,25 @@ class Spectrum:
else:
return self.spec_data
+ def get_channel(self, copy=True):
+ if copy:
+ return self.channel.copy()
+ else:
+ return self.channel
+
+ def get_energy(self, mean="geometric"):
+ """
+ Get the energy values of each channel if RMF present.
+ """
+ if self.rmf is None:
+ return None
+ else:
+ return self.rmf.get_energy(mean=mean)
+
def get_arf(self, copy=True):
+ """
+ Get the corresponding ARF curve data for this spectrum.
+ """
if self.arf is None:
return None
else:
@@ -189,6 +431,15 @@ class Spectrum:
if i > 0:
print("*** Fixed negative channels ***", file=sys.stderr)
+ def reset_header_keywords(self,
+ keywords=["ANCRFILE", "RESPFILE", "BACKFILE"]):
+ """
+ Reset the keywords to "NONE" to avoid confusion or mistakes.
+ """
+ for kw in keywords:
+ if kw in self.header:
+ header[kw] = "NONE"
+
def write(self, filename, clobber=False):
"""
Create a new "SPECTRUM" table/extension and replace the original
@@ -202,9 +453,10 @@ class Spectrum:
header=self.header)
self.fitsobj["SPECTRUM"] = ext_spec
self.fitsobj.writeto(filename, clobber=clobber, checksum=True)
+# class Spectrum }}}
-class Crosstalk:
+class Crosstalk: # {{{
"""
Crosstalk correction.
"""
@@ -245,6 +497,9 @@ class Crosstalk:
self.outfile = config["outfile"]
def do_correction(self, fix_negative=False, verbose=False):
+ """
+ Perform the crosstalk correction.
+ """
self.spectrum.header.add_history("Crosstalk Correction BEGIN")
self.spectrum.header.add_history(" TOOL: %s @ %s" % (\
os.path.basename(sys.argv[0]), datetime.utcnow().isoformat()))
@@ -269,7 +524,10 @@ class Crosstalk:
def write(self, filename=None, clobber=False):
if filename is None:
filename = self.outfile
+ self.spectrum.reset_header_keywords(
+ keywords=["ANCRFILE", "RESPFILE", "BACKFILE"])
self.spectrum.write(filename, clobber=clobber)
+# class Crosstalk }}}
def main():