aboutsummaryrefslogtreecommitdiffstats
path: root/astro/fitting
diff options
context:
space:
mode:
Diffstat (limited to 'astro/fitting')
-rwxr-xr-xastro/fitting/fit_betasbp_cut.py32
1 files changed, 20 insertions, 12 deletions
diff --git a/astro/fitting/fit_betasbp_cut.py b/astro/fitting/fit_betasbp_cut.py
index 9dcf730..2d2931e 100755
--- a/astro/fitting/fit_betasbp_cut.py
+++ b/astro/fitting/fit_betasbp_cut.py
@@ -11,6 +11,9 @@
# 2015/05/29
#
# Changelogs:
+# v0.5.1, 2015/06/07, Aaron LI
+# * fixed 'dof' calculation with 'n-p-1'
+# * fixed 'par_eps' calculation/configuration
# v0.5.0, 2015/06/07, Aaron LI
# * added 'fit_model_bounds' using 'scipy.optimize.minimize' to
# perform function minimization with bounds
@@ -33,7 +36,7 @@
# * Support read model initial parameter values from input file.
#
# TODO:
-# * calculate fitting parameter's standard deviation
+# * calculate fitting parameter's confidence interval / confidence bounds
# * to normalize fitting paramters to be the same order of magnitude
# for better minimization
# Ref: http://stackoverflow.com/questions/21369139/normalization-for-optimization-in-python
@@ -42,7 +45,7 @@
from __future__ import print_function, division
-__version__ = "0.5.0"
+__version__ = "0.5.1"
__date__ = "2015/06/07"
import numpy as np
@@ -108,7 +111,7 @@ def fit_model(func, xdata, ydata, yerrdata, p0):
# the function evaluated at the output parameters
fvec = lambda x: func(x, *popt)
# degree of freedom
- dof = len(xdata) - len(popt)
+ dof = len(xdata) - len(popt) - 1
# chi squared
chisq = np.sum(((ydata - fvec(xdata)) / yerrdata) ** 2)
# one standard deviation errors on the parameters
@@ -122,10 +125,12 @@ def fit_model(func, xdata, ydata, yerrdata, p0):
return (popt, infodict)
-def fit_model_bounds(func, xdata, ydata, yerrdata, p0=None, bounds=None,
- options=None):
+def fit_model_bounds(func, xdata, ydata, yerrdata, p0=None,
+ bounds=None, options=None):
"""
- Fit the provided data with the beta model.
+ Fit the provided data with the beta model, and apply parameter
+ bounds requirements.
+ Using 'scipy.optimize.minimize'.
Arguments:
p0: initial values for the parameters of beta model
@@ -142,12 +147,12 @@ def fit_model_bounds(func, xdata, ydata, yerrdata, p0=None, bounds=None,
* perr: one standard deviation errors on the parameters
"""
# objective function to be minimized, required format of 'f(x, *args)'
- f = lambda x: calc_chisq(func, xdata, ydata, yerrdata, *x)
+ f = lambda p: calc_chisq(func, xdata, ydata, yerrdata, *p)
# minimize the given function using 'scipy.optimize.minimize' with bounds
res = minimize(f, p0, method=MINIMIZE_METHOD, bounds=bounds,
options=options)
popt = res.x
- print("DEBUG: minimization results:\n", res, file=sys.stderr)
+ #print("DEBUG: minimization results:\n", res, file=sys.stderr)
# check minimization results
if not res.success:
@@ -157,7 +162,7 @@ def fit_model_bounds(func, xdata, ydata, yerrdata, p0=None, bounds=None,
# the function evaluated at the output parameters
fvec = lambda x: func(x, *popt)
# degree of freedom
- dof = len(xdata) - len(popt)
+ dof = len(xdata) - len(popt) - 1
# chi squared
chisq = res.fun
# one standard deviation errors on the parameters
@@ -408,12 +413,15 @@ def main():
# initial values
par_0 = np.array([s0_0, rc_0, beta_0, c_0])
# parameter bounds
- par_bounds = [(s0_lower, s0_upper), (rc_lower, rc_upper),
- (beta_lower, beta_upper), (c_lower, c_upper)]
+ par_bounds = np.array([(s0_lower, s0_upper), (rc_lower, rc_upper),
+ (beta_lower, beta_upper), (c_lower, c_upper)])
# set eps for the parameters (required for the minimize method,
# otherwise error 'ABNORMAL_TERMINATION_IN_LNSRCH' occurs, which
# may due to the different order of magnitude of each parameters)
- par_eps = par_0 * 1e-4
+ par_eps = np.absolute(par_0) * 1e-3
+ par_eps[ par_eps<1e-15 ] = 1e-15 # set par_eps >= 1e-14
+ if args.verbose:
+ print("DEBUG: parameters eps:\n", par_eps, file=sys.stderr)
if args.bounds:
## 'fit_model_bounds' to perform fitting with bounds