aboutsummaryrefslogtreecommitdiffstats
path: root/julia
diff options
context:
space:
mode:
Diffstat (limited to 'julia')
-rw-r--r--julia/force_field_transform.jl135
-rw-r--r--julia/force_field_transform_fft.jl29
2 files changed, 164 insertions, 0 deletions
diff --git a/julia/force_field_transform.jl b/julia/force_field_transform.jl
new file mode 100644
index 0000000..1b3872a
--- /dev/null
+++ b/julia/force_field_transform.jl
@@ -0,0 +1,135 @@
+#!/usr/bin/env julia
+# -*- coding: utf-8 -*-
+#
+# Force field transform
+#
+# Aaron LI
+# 2015/07/14
+#
+
+using FITSIO;
+#include("../julia/ndgrid.jl");
+
+@everywhere function meshgrid(vx, vy)
+ m, n = length(vy), length(vx)
+ vx = reshape(vx, 1, n)
+ vy = reshape(vy, m, 1)
+ (repmat(vx, m, 1), repmat(vy, 1, n))
+end
+
+
+# Calculate the forces between the specified point with respect to the image.
+@everywhere function force(p0, img)
+ img = copy(img);
+ x0, y0 = p0;
+ v0 = img[y0, x0];
+ img[y0, x0] = 0.0;
+ rows, cols = size(img);
+ x, y = meshgrid(1:cols, 1:rows);
+ x[y0, x0] = -1;
+ y[y0, x0] = -1;
+ f_x = v0 .* img .* (x-x0) ./ ((x-x0).^2 + (y-y0).^2).^1.5;
+ f_y = v0 .* img .* (y-y0) ./ ((x-x0).^2 + (y-y0).^2).^1.5;
+ #return (f_x, f_y);
+ return (sum(f_x), sum(f_y));
+end
+
+
+# Perform the "force field transform" for the input image.
+#
+# Return:
+# (amplitudes, angles)
+# amplitudes: the amplitudes of the resulting forces of each pixel
+# angles: the directions of the resulting forces of each pixel,
+# in unit radian.
+@everywhere function force_field_transform_serial(img, rowstart=1, rowend="end")
+ rows, cols = size(img)
+ if rowend == "end"
+ rowend = rows
+ end
+ amplitudes = zeros(rows, cols)
+ angles = zeros(rows, cols)
+ t0 = time()
+ t_p = t0 + 30 # in 30 seconds
+ for y = rowstart:rowend
+ for x = 1:cols
+ t1 = time()
+ if (t1 >= t_p)
+ percent = 100*((y-rowstart)*cols + x+1) / ((rowend-rowstart+1)*cols)
+ @printf("Worker #%d: progress: %.3f%%; %.1f min\n",
+ myid(), percent, (t1-t0)/60.0)
+ t_p += 30 # in 30 seconds
+ end
+ F_x, F_y = force((x, y), img)
+ #@printf("F_x, F_y = (%f, %f)\n", F_x, F_y);
+ amplitudes[y, x] = sqrt(F_x^2 + F_y^2)
+ angles[y, x] = atan2(F_y, F_x)
+ end
+ end
+ t1 = time()
+ @printf("Worker #%d: finished in %.1f min!\n", myid(), (t1-t0)/60.0)
+ return (amplitudes, angles)
+end
+
+
+# parallel-capable
+function force_field_transform(img)
+ t0 = time()
+ rows, cols = size(img)
+ np = nprocs()
+ amplitudes = cell(np)
+ angles = cell(np)
+ # split rows for each process
+ rows_chunk = div(rows, np)
+ rowstart = cell(np)
+ rowend = cell(np)
+ @sync begin
+ for p = 1:np
+ rowstart[p] = 1 + rows_chunk * (p-1)
+ if p == np
+ rowend[p] = rows
+ else
+ rowend[p] = rowstart[p] + rows_chunk - 1
+ end
+ # perform transform
+ @async begin
+ amplitudes[p], angles[p] = remotecall_fetch(p,
+ force_field_transform_serial,
+ img, rowstart[p], rowend[p])
+ end
+ end
+ end
+ t1 = time()
+ @printf("Finished in %.1f min!\n", (t1-t0)/60.0)
+ return (sum(amplitudes), sum(angles))
+end
+
+
+# arguments
+#println(ARGS);
+if length(ARGS) != 3
+ println("Usage: PROG <input_fits_img> <out_fits_amplitudes> <out_fits_angles>");
+ exit(1);
+end
+
+infile = ARGS[1];
+outfile_ampl = ARGS[2];
+outfile_angles = ARGS[3];
+
+fits_img = FITS(infile);
+img = read(fits_img[1]);
+header = read_header(fits_img[1]);
+
+# perform force field transform
+ampl, angles = force_field_transform(img);
+
+outfits_ampl = FITS(outfile_ampl, "w");
+outfits_angles = FITS(outfile_angles, "w");
+write(outfits_ampl, ampl; header=header);
+write(outfits_angles, angles; header=header);
+
+close(fits_img);
+close(outfits_ampl);
+close(outfits_angles);
+
+#= vim: set ts=8 sw=4 tw=0 fenc=utf-8 ft=julia: =#
diff --git a/julia/force_field_transform_fft.jl b/julia/force_field_transform_fft.jl
new file mode 100644
index 0000000..c5bf905
--- /dev/null
+++ b/julia/force_field_transform_fft.jl
@@ -0,0 +1,29 @@
+# -*- coding: utf-8 -*-
+#
+# To do force field transform using FFT
+#
+# Aaron LI
+# 2015/07/16
+#
+
+function forcefieldtransform_fft(img)
+ rows, cols = size(img)
+ pic = zeros(3*rows, 3*cols)
+ pic[1:rows, 1:cols] = img
+ # unit force field
+ unit_ff = complex(zeros(3*rows, 3*cols))
+ for r = 1:(2*rows-1)
+ for c = 1:(2*cols)
+ d = (rows+cols*im) - (r+c*im)
+ if (r, c) == (rows, cols)
+ unit_ff[r, c] = 0 + 0im
+ else
+ unit_ff[r, c] = d / abs(d)^3
+ end
+ end
+ end
+ # FIXME matrix sizes
+ ff = sqrt(rows*cols) * ifft(fft(pic) .* fft(unit_ff))
+ #ff_crop = ff[rows:2*rows, cols:2*cols]
+end
+